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SOME PROPERTIES OF SPECIAL POLYNOMIALS WITH

EXPONENTIAL DISTRIBUTION

Jung Yoog Kang and Tai Sup Lee

Abstract. In this paper, we discuss special polynomials involving ex-

ponential distribution, which is related to life testing. We derive some
identities of special polynomials such as the symmetric property, recur-

rence formula and so on. In addition, we investigate explicit properties
of special polynomials by using their derivative and integral.

1. Introduction

The exponential distribution is one of the widely used continuous distribu-
tions. It is often used to model the time elapsed between events (see [1,2,4–6,8]).

Definition 1.1. For λ > 0, the probability density function of an exponential
distribution is given by

fX(x) =

{
λe−λx if x > 0,
0 if x ≤ 0,

where X is a continuous random variable which is said to have an exponential
distribution with parameter λ > 0.

An interesting property of the exponential distribution is that it can be
viewed as a continuous analogue of the geometric distribution. The most im-
portant property of the exponential distribution is that it is memoryless, so we
can state this formally as follows:

P (X > a+ b |X > a) = P (X > b), a, b ≥ 0.

Properties 1.2. For λ > 0, an exponential distribution has

(i) (Mean) E(X) = 1
λ ,

(ii) (Variance) V (X) = 1
λ2 ,

(iii) (Moments) E(Xn) = n!
λn for n = 1, 2, . . .,

(iv) (Median) m(X) = ln(2)
λ < E(X),
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where X is a continuous random variable which is said to have an exponential
distribution with parameter λ > 0.

Since the 1950s, many mathematicians have tried to find the properties
of the exponential distribution by using various perspectives and methods (see
[1,2,4–6,8]) and they have found some theorems relevant to life testing by using
an exponential distribution. Nowadays, those who study life testing concentrate
on the prediction of future records (see [3, 7, 9]).

Since an exponential distribution is very important in the probability theory,
we feel that we need to study special polynomials including this distribution
in detail. We hypothesized that special polynomials would have some charac-
teristic properties when we combine the probability denseity function which is
related to the exponential distribution.

Based on this idea, the main concern of this paper is to define special poly-
nomials and study some of their formulae. Our paper is organized as follows:
in Section 2, we define special polynomials including the probability density
function which is related to the exponential distribution. From this definition,
we investigate some interesting identities of polynomials and derive some rela-
tions. In Section 3, we consider some relations of special polynomials by using
derivative and integral.

2. Some basic properties of special polynomials including
exponential distribution

In this section, we define special polynomials and study some properties
of these polynomials that are related to the exponential distribution. Also, we
investigate a distinction of special polynomials by using the recurrence formula.

Definition 2.1. For λ > 0, we define special polynomials

∞∑
n=0

En(λ : x)
tn

n!
=

λ

eλt
etx.

From Definition 2.1, we note that

∞∑
n=0

En(λ : 0)
tn

n!
=

∞∑
n=0

En(λ)
tn

n!
=

λ

eλt
.

From the above equation, we know that
∑∞
n=0 En(λ) t

n

n! is the probability den-

sity function and we note that E(X) = 1/λ, V (X) = 1/λ2.

Theorem 2.2. Let λ > 0. Then we have

(i) En(λ : x) =
∑n
k=0

(
n
k

)
Ek(λ)xn−k,

(ii) En(λ : x+ y) =
∑n
k=0

(
n
k

)
Ek(λ : x)yn−k.
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Proof. (i) From the generating function of specical polynomials, we find

∞∑
n=0

En(λ : x)
tn

n!
=

λ

eλt
etx =

∞∑
n=0

En(λ)
tn

n!

∞∑
n=0

xn
tn

n!
.

Using Cauchy’s product and a comparison of coefficients, we can complete the
proof of Theorem 2.2(i).

(ii) It is a similar method to the proof of (i). �

Theorem 2.3. Let λ > 0 and x be any real number. Then we find

(i) En(λ : x) = (−1)n+1En(−λ : −x),
(ii) En(λ : x) = 2En(λ2 : −λ2 + x).

Proof. (i) Putting t→ −t, λ→ −λ, and x→ −x, we have

∞∑
n=0

En(−λ : −x)
(−t)n

n!
= − λ

eλt
etx = −

∞∑
n=0

En(λ : x)
tn

n!
.

The required relation now follows on comparing the coefficients of tn/n! on
both sides.

(ii) By substituting λ and x with λ/2 and −λ/2 + x, respectively, we derive

∞∑
n=0

En(
1

2
λ : −1

2
λ+ x)

tn

n!
=

1

2

λ

e
1
2λt

et(−
1
2λ+x) =

1

2

∞∑
n=0

En(λ : x)
tn

n!
.

The required relation now follows immediately. �

Theorem 2.4. For λ > 0, we obtain

xn =

n∑
k=0

(
n
k

)
λn−k−1Ek(λ : x).

Proof. Using the generating function for eλt 6= 0, we have

∞∑
n=0

En(λ : x)
tn

n!

∞∑
n=0

λn
tn

n!
= λ

∞∑
n=0

xn
tn

n!
.

To obtain the result, we note that

λxn =

n∑
k=o

(
n
k

)
λn−kEk(λ : x),

and the proof is completed. �

Theorem 2.5. Let λ > 0 and x be any real number. Then the following holds:

n∑
k=0

(
n

k

)
(λ− x)kEn−k(λ : x) =

{
λ if n = 0,
0 if n 6= 0.
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Proof. From Definition 2.1, we can represent
∞∑
n=0

En(λ : x)
tn

n!

∞∑
n=0

(λ− x)n
tn

n!
= λ.

Now using Cauchy’s product, we obtain the relation

∞∑
n=0

(
n∑
k=0

(
n
k

)
(λ− x)nEn−k(λ : x)

)
tn

n!
= λ.

The required relation now follows immediately. �

From Theorem 2.5, we see:

Corollary 2.6.
n∑
k=0

(
n
k

)
λkEn−k(λ) =

{
λ if n = 0,
0 if n 6= 0.

Example 2.7. From Theorem 2.5, we can calculate a few polynomials as
follows:

E0(λ : x) = λ,

E1(λ : x) = λx− λ2 = −λ(λ− x),

E2(λ : x) = λx2 − 2λ2x+ λ3 = λ(λ− x)2,

E3(λ : x) = λx3 − 3λ2x2 + 3λ3x− λ4 = −λ(λ− x)3,

....

Theorem 2.8. Let a, b be integers. Then we derive
n∑
k=0

(
n

k

)(a
b

)n−2k
En−k(

bλ

a
:
bx

a
)Ek(

aλ

b
:
ay

b
)

=

n∑
k=0

(
n
k

)(
b

a

)n−2k
En−k(

aλ

b
:
ax

b
)Ek(

bλ

a
:
by

a
).

Proof. Consider that

A =
λ2et(x+y)

e2λt
.

The form A can be turned to

A =
λ

eλt
etx

λ

eλt
ety

=

∞∑
n=0

(a
b

)n
En(

bλ

a
:
bx

a
)
tn

n!

∞∑
n=0

(
b

a

)n
En(

aλ

b
:
ay

b
)
tn

n!

=

∞∑
n=0

(
n∑
k=0

(
n

k

)(a
b

)n−2k
En−k(

bλ

a
:
bx

y
)Ek(

aλ

b
:
ay

b
)

)
tn

n!
,
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or equivalently,

A =

∞∑
n=0

(
b

a

)n
En(

aλ

b
:
ax

b
)
tn

n!

∞∑
n=0

(a
b

)n
En(

bλ

a
:
by

a
)
tn

n!

=

∞∑
n=0

(
n∑
k=0

(
n

k

)(
b

a

)n−2k
En−k(

aλ

b
:
ax

b
)Ek(

bλ

a
:
by

a
)

)
tn

n!
.

The required relation now follows by comparing of the above equations. �

If a = 1 in Theorem 2.8, then we see:

Corollary 2.9.

n∑
k=0

(
n

k

)(
1

b

)n−2k
En−k(bλ : bx)Ek(

λ

b
:
y

b
)

=

n∑
k=0

(
n
k

)
bn−2kEn−k(

λ

b
:
x

b
)Ek(bλ : by).

Theorem 2.10. Let λ > 0. Then we have

DEn(λ : x) = nEn−1(λ : x).

Proof. From Theorem 2.2, we find

DEn(λ : x) =

n∑
k=0

(
n
k

)
Ek(λ)

d

dx
xn−k

= n

n−1∑
k=0

(
n− 1
k

)
Ek(λ)xn−k−1

= nEn−1(λ : x).

Therefore we know that the above proof of Theorem 2.9 is clear. �

3. Some identities of special polynomials using derivative and
integral

In this section, we use addition theorem to obtain some identities for spe-
cial polynomials and use derivative and integral. Using two parameters, we
investigate some interesting properties of special polynomials.

Theorem 3.1. Let x, y be real numbers. Then the following holds:

DyEn(λ : x+ y) = nEn−1(λ : x+ y).



388 J. Y. KANG AND T. S. LEE

Proof. In Theorem 2.2(ii), we apply the derivative definition as

DyEn(λ : x+ y) =

n∑
k=0

(
n
k

)
Ek(λ : x)

d

dy
yn−k

= n

n−1∑
k=0

(n− 1)!

(n− 1− k)!k!
Ek(λ : x)yn−k−1

= n

n−1∑
k=0

(
n− 1
k

)
Ek(λ : x)yn−k−1.

Comparing Theorem 2.2(ii) again, the required relation follows. �

Theorem 3.2. Let x, y and λ be real numbers with λ > 0. Then we have∫ 1

0

En(λ : x+ y)dy =
En+1(λ : 1 + x)− En+1(λ : x)

n+ 1
.

Proof. Using the integral from Theorem 2.2(ii), we get∫ 1

0

En(λ : x+ y)dy =

∫ 1

0

n∑
k=0

(
n
k

)
Ek(λ : x)yn−kdy

=

n∑
k=0

(
n
k

)
Ek(λ : x)

1

n− k + 1
yn−k+1

∣∣∣1
0

=
1

n+ 1

n+1∑
k=o

(
n+ 1
k

)
Ek(λ : x)yn+1−k

∣∣∣1
0

=
1

n+ 1
(En+1(λ : x+ 1)− En+1(λ : x)) .

Therefore the required relation follows immediately. �

From Theorem 2.2(i) and Theorem 3.2, we see:

Corollary 3.3. ∫ 1

0

En(λ : x)dx =
En+1(λ : 1)− En+1(λ)

n+ 1
.

Theorem 3.4. For λ, x, y > 0, we obtain

En(λ : x+ y) =

n∑
k=0

k∑
l=0

(
n

k

)(
k

l

)
(−1)l−1El(−λ)xk−lyn−k.

Proof. Replacing λ, t with −λ,−t, respectively, we get
∞∑
n=0

En(−λ : x+ y)
(−t)n

n!

=
−λ
eλt

e−t(x+y)
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= −
∞∑
n=0

(
n∑
l=0

(
n

l

)
El(λ)(−1)n−lxn−l

)
tn

n!

∞∑
n=0

(−y)n
tn

n!

=

∞∑
n=0

(
n∑
k=0

k∑
l=0

(
n

k

)(
k

l

)
(−1)n−l−1El(λ)xk−lyn−k

)
tn

n!
.

From the above equation, the following holds

(−1)nEn(λ : x+ y) =

n∑
k=0

k∑
l=0

(
n

k

)(
k

l

)
(−1)n−l−1El(−λ)xk−lyn−k.

Therefore we complete the proof of Theorem 3.4. �

From Theorem 2.2(ii) and Theorem 3.4, we find:

Corollary 3.5.

n∑
k=0

(
n

k

)
Ek(λ : x)yn−k =

n∑
k=0

k∑
l=0

(
n

k

)(
k

l

)
(−1)l−1El(−λ)xk−lyn−k.

From Theorem 3.4, we have:

Corollary 3.6.

En(λ : x) =

n∑
k=0

(
n

k

)
(−1)k+1Ek(−λ)xn−k.

Theorem 3.7. For λ > 0, we derive

n−1∑
k=0

(
n− 1

k

)
Ek(λ : x) =

n−1∑
k=0

k∑
l=0

(
n− 1

k

)(
k

l

)
(−1)l−1El(−λ)xk−l.

Proof. In Theorem 3.4, we can apply the derivative definition as

DyEn(λ : x+ y) =

n∑
k=0

k∑
l=0

(
n

k

)(
k

l

)
(−1)l−1El(−λ)xk−lDyy

n−k

=

n−1∑
k=0

k∑
l=0

n!(n− k)

(n− k)!k!

(
k

l

)
(−1)l−1El(−λ)xk−lyn−k−1

= n

n−1∑
k=0

k∑
l=0

(
n− 1

k

)(
k

l

)
(−1)l−1El(−λ)xk−lyn−k−1,

by comparing with Theorem 3.1 and Theorem 3.7 immediately gives the re-
quired relation. �

Furthermore, we can find the following corollary 3.8 by applying the proces-
sor of Theorem 3.4 to Corollary 3.6 and comparing the result with Theorem
2.9.
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Corollary 3.8. From Theorem 3.7, we have

n−1∑
k=0

(
n− 1

k

)
Ek(λ) =

n−1∑
k=0

(
n− 1

k

)
(−1)k+1Ek(−λ).
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