Fig. 1. Simulation result for the effective thermal conductivity
Fig. 2. Simulation model for the equivalent properties of thecurrent collector
Fig. 4. Current density and temperature distribution of current density distribution of the counter-flow type MCFC
Fig. 5. Current density and temperature distribution of 0.3 m×0.3 m co-flow type MCFC
Fig. 6. Current density and temperature distribution of 0.3 m×0.3 m cross-flow type MCFC
Fig. 7. Current density and temperature distribution of the 0.25 m2 cell and at the cell voltage of 0.9 V: (a) and (b) are co-flow; (b) and (c) are cross-flow; (e) and (f) are counter-flow
Fig. 8. Maximum current density value with respect to the cell area and flow type at 0.9 V
Fig. 9. Maximum temperature value with respect to the cell area and flow type at the cell voltage of 0.9 V
Fig. 3. Relationship of the pressure difference with respect to the input average velocity
Table 1. Thermal properties of the anode and the cathode
References
- X. Li, "Principles of fuel cells", Taylor & Francis Group, USA, 2005. Retrieved from https://www.crcpress.com/Principles-of-Fuel-Cells/Li/p/book/9781591690221.
- H. K. Park, Y. R. Lee, M. H. Kim, G. Y. Chung, S. W. Nam, S. A. Hong, T. H. Lim, and H. C. Lim, "Studies of the effects of the reformer in an internal-reforming molten carbonate fuel cell by mathematical modeling", Journal of Power Sources, Vol. 104, No. 1, 2002, pp. 140-147, doi: https://doi.org/10.1016/S0378-7753(01)00912-0.
- C. Yuh, J. Colpetzer, K. Dickson, M. Farooque, and G. Xu, "Carbonate fuel cell materials", Journal of Materials Engineering and Performance, Vol. 15, No. 4, 2006, pp. 457-462, doi: https://doi.org/10.1361/105994906X117305.
- C. G. Lee, K. S. Ahn, S. Y. Park, H. K. Seo, and H. C. Lim, "Temperature characteristics of the molten carbonate fuel cell stack", Trans. of the Korean Hydrogen and New Energy Society, Vol. 15, No. 1, 2004, pp. 54-61. Retreved from http://www.koreascience.or.kr/article/JAKO200430360539720.page.
- G. Wilemski, "Simple porous electrode models for molten carbonate fuel cells", J. Electrochem. Soc. Vol. 130, 1983, pp. 117-121. https://doi.org/10.1149/1.2119635
- S. J. Lee, C. Y. Lim, and C. W. Lee, "Design of Cell Frame Structure of Unit Cell for Molten Carbonate Fuel Cell Using CFD Analysis", Trans. of Korean Hydrogen and New Energy Society, Vol. 29, No. 1, pp. 56-63, doi: https://doi.org/10.7316/KHNES.2018.28.1.56.
- Y. J. Kim, I. G. Chang, T. W. Lee, and M. K. Chung, "Effects of relative gas flow direction in the anode and cathode on the performance characteristics of a Molten Carbonate Fuel Cell", Fuel, Vol. 89, No. 5, 2010, pp. 1019-1028, doi: https://doi.org/10.1016/j.fuel.2009.10.027.
- F. Yoshiba, N. Ono, Y. Izaki, T. Watanabe, and T. Abe, "Numerical analyses of the internal conditions of a molten carbonate fuel cell stack: comparison of stack performances for various gas flow types", Journal of Power Sources, Vol. 71, No. 1-2, 1998, pp. 328-336, doi: https://doi.org/10.1016/S0378-7753(97)02727-4.
-
C. W. Lee, M. Lee, M. J. Lee, S. C. Chang, S. P. Yoon, H. C. Ham, and J. Han, "Effect of the flow directions on a 100
$cm^2$ MCFC single cell with internal flow channels", International Journal of Hydrogen Energy, Vol. 41, No. 41, 2016, pp. 18747-18760, doi: https://doi.org/10.1016/j.ijhydene.2016.03.188.