DOI QR코드

DOI QR Code

코크스오븐가스 기반 천연가스, 바이오가스가 혼합된 연료의 가압 수증기 개질 반응에 관한 연구

Study on the Pressurized Steam Reforming of Natural Gas and Biogas Mixed Cokes Oven Gas

  • 전형준 (한국과학기술원(KAIST) 기계공학과) ;
  • 한광우 (한국과학기술원(KAIST) 기계공학과) ;
  • 배중면 (한국과학기술원(KAIST) 기계공학과)
  • 투고 : 2019.03.06
  • 심사 : 2019.04.30
  • 발행 : 2019.04.30

초록

Greenhouse gas emissions have a profound effect on global warming. Various environmental regulations have been introduced to reduce the emissions. The largest amount of greenhouse gases, including carbon dioxide, is produced in the steel industry. To decrease carbon dioxide emission, hydrogen-based iron oxide reduction, which can replace carbon-based reduction has received a great attention. Iron production generates various by-product gases, such as cokes oven gas (COG), blast furnace gas (BFG), and Linz-Donawitz gas (LDG). In particular, COG, due to its high concentrations of hydrogen and methane, can be reformed to become a major source of hydrogen for reducing iron oxide. Nevertheless, continuous COG cannot be supplied under actual operation condition of steel industry. To solve this problem, this study proposed to use two alternative COG-based fuel mixtures; one with natural gas and the other with biogas. Reforming study on two types of mixed gas were carried out to evaluate catalyst performance under a variety of operating conditions. In addition, methane conversion and product composition were investigated both theoretically and experimentally.

키워드

SSONB2_2019_v30n2_111_f0001.png 이미지

Fig. 1. P&ID of COG reforming

SSONB2_2019_v30n2_111_f0003.png 이미지

Fig. 3. Thermodynamic composition and methane conversion of mixed fuel at 850℃, 20 bar, and SCR 3.0

SSONB2_2019_v30n2_111_f0004.png 이미지

Fig. 4. Effect of pressure and GHSV on the experimental methane conversion of r-COG reforming

SSONB2_2019_v30n2_111_f0005.png 이미지

Fig. 5. Effect of GHSV on product composition of r-COG reforming at (a) atmospheric pressure, (b) 10 bar, (c) 20 bar

SSONB2_2019_v30n2_111_f0008.png 이미지

Fig. 2. Thermodynamic composition and methane conversion of r-COG at 850℃, SCR 3.0 and pressure (a) atmospheric pressure, (b) 20 bar

SSONB2_2019_v30n2_111_f0009.png 이미지

Fig. 6. Effect of feed gas on the product composition at 20 bar, GHSV 20,000 h-1

SSONB2_2019_v30n2_111_f0010.png 이미지

Fig. 7. Effect of feed gas on thermodynamic and experimental methane conversion at 20 bar and GHSV 20,000 h-1

Table 1. Concentration of mixed feed gas (mol%)

SSONB2_2019_v30n2_111_t0001.png 이미지

Table 2. Operating condition of experiment

SSONB2_2019_v30n2_111_t0002.png 이미지

참고문헌

  1. J. Rogelj, M. den Elzen, N. Hohne, T. Fransen, H. Fekete, H. Winkler, R. Schaeffer, F. Sha, K. Riahi, and M. Meinshausen, "Paris Agreement climate proposals need a boost to keep warming well below $2^{\circ}C$", Nature, Vol. 534, 2016, pp. 631-639, doi: https://doi.org/10.1038/nature18307.
  2. Intergovernmental Panel on Climate Change IPCC, "Global Warming of $1.5^{\circ}C$ - Summary for Policymakers", October 8, 2018. Retrieved from https://www.ipcc.ch/sr15/chapter/summary-for-policy-makers/.
  3. S. Yoo, H, Kim, B. Kim, W. Jang, and H. Roh, "The Effect of La2O3 Loading on the Performance of Ni-La2O3-Ce0.8Zr0.2O2 Catalysts for Steam Reforming of Methane", Trans. of the Korean Hydrogen and New Energy Society, Vol. 29, No. 5, 2018, pp. 419-426, doi: https://doi.org/10.7316/KHNES.2018.29.5.419.
  4. L. Li, K. Morishita, and T. Takarada, "Conversion of Hot Coke Oven Gas into Light Fuel Gas over Ni/$Al_2O_3$ Catyalst", Journal of Chemical Engineering of Japan, Vol. 39, No. 4, 2006, pp. 461-468, doi: https://doi.org/10.1252/jcej.39.461.
  5. M. Onozaki, K. Watanabe, T. Hashimoto, H. Saegusa, and Y. Katayama, "Hydrogen production by the partial oxidation and steam reforming of tar from hot coke oven gas", Fuel, Vol. 85, No. 2, 2006, pp. 143-149, doi: https://doi.org/10.1016/j.fuel.2005.02.028.
  6. Z. Yang, Y. Zhang, X. Wang, Y. Zhang, X. Lu, and W. Ding, "Steam Reforming of Coke Oven Gas for Hydrogen Production over a NiO/MgO Solid Solution Catalyst", Energy & Fuels, Vol. 24, No. 2, 2010, pp. 785-788, doi: https://doi.org/10.1021/ef901034n.
  7. H. Choi, J. Kim, W. Kim, S. Kim, and D. Koh, "Optimization of Reaction Conditions for the High Purity Hydrogen Production Process Using By-Product Gases in Steel Works", Trans. of the Korean hydrogen and new energy society, Vol. 27, No. 6, 2016, pp. 621-627, doi: https://doi.org/10.7316/khnes.2016.27.6.621.
  8. S. Lee, J. Bae, S. Lim, and J. Park, "Improved configuration of supported nickel catalysts in a steam reformer for effective hydrogen production from methane", Journal of Power Sources, Vol. 180, No. 1, 2008, pp. 506-515, doi: https://doi.org/10.1016/j.jpowsour.2008.01.081.
  9. J. Bae, S. Lee, S. Kim, J. Oh, S. Choi, M. Bae, I. Kang, and S. P. Katikaneni, "Liquid fuel processing for hydrogen production: A review", International Journal of Hydrogen Energy, Vol. 41, No. 44, 2016, pp. 19990-20022, doi: https://doi.org/10.1016/j.ijhydene.2016.08.135.
  10. T. Huang and M. Huang, "Effect of Ni content on hydrogen production via steam reforming of methane over Ni/GDC catalysts", Chemical Engineering Journal, Vol. 145, No. 1, 2008, pp. 149-153, doi: https://doi.org/10.1016/j.cej.2008.07.052.
  11. S. Tonomura, "Outline of Course 50", Energy Procedia, Vol. 37, 2013, pp. 7160-7167, doi: https://doi.org/10.1016/j.egypro.2013.06.653.
  12. M. Abdul Quader, S. Ahmed, S. Z. Dawal, and Y. Nukman, "Present needs, recent progress and future trends of energy-efficient Ultra-Low Carbon Dioxide ($CO_2$) Steelmaking (ULCOS) program", Renewable and Sustainable Energy Reviews, Vol. 55, 2016, pp. 537-549, doi: https://doi.org/10.1016/j.rser.2015.10.101.
  13. K. Meijer, M. Denys, J. Lasar, J. P. Birat, G. Still, and B. Overmaat, "ULCOS: ultra-low $CO_2$ steelmaking", Ironmaking & Steelmaking, Vol. 36, No. 4, 2013, pp. 249-251, doi: https://doi.org/10.1179/174328109X439298.
  14. P. Ferreira-Aparicio, M. J. Benito, and J. L. Sanz, "New Trends in Reforming Technologies: from Hydrogen Industrial Plants to Multifuel Microreformers", Catalysis Reviews, Vol. 47, No. 4, 2005, pp. 491-588, doi: https://doi.org/10.1080/01614940500364958.
  15. S. Kim and J. Bae, "Numerical analysis of a 20-kW e biogas steam reformer in PEMFC applications", International Journal of Hydrogen Energy, Vol. 39, No. 34, 2014, pp. 19485-19493, doi: https://doi.org/10.1016/j.ijhydene.2014.09.137.
  16. J. Wei and E. Iglesia, "Isotopic and kinetic assessment of the mechanism of reactions of $CH_4$ with $CO_2$ or $H_2O$ to form synthesis gas and carbon on nickel catalysts", Journal of Catalysis, Vol. 224, No. 2, 2004, pp. 370-383, doi: https://doi.org/10.1016/j.jcat.2004.02.032.