DOI QR코드

DOI QR Code

Design of Guidance Law and Lateral Controller for a High Altitude Long Endurance UAV

고고도 장기체공 무인기의 유도 및 방향축 제어 알고리즘 설계

  • Received : 2017.11.10
  • Accepted : 2019.04.10
  • Published : 2019.04.30

Abstract

This paper elaborates on the directional axis guidance and control algorithm used in mission flight for high altitude long endurance UAV. First, the directional axis control algorithm is designed to modify the control variable such that a strong headwind prevents the UAV from moving forward. Similarly, the guidance algorithm is designed to operate the respective algorithms for Fly-over, Fly-by, and Hold for way-point flight. The design outcomes of each guidance and control algorithm were confirmed through nonlinear simulation of high altitude long endurance UAV. Finally, the penultimate purpose of this study was to perform an actual mission flight based on the design results. Consequently, flight tests were used to establish the flight controllability of the designed guidance and control algorithm.

본 논문에서는 고고도 장기체공 무인항공기의 임무 비행을 위한 방향축 유도, 제어 알고리즘에 대해 기술 하였다. 먼저 방향축 제어 알고리즘은 임무 기간 중 무인항공기가 전진비행을 할 수 없을 맞바람에 대해 제어 변수를 전환하는 알고리즘을 설계하였다. 유도법칙은 항로점 비행을 위해 Fly-over, Fly-by, Hold 속성에 대한 각각의 알고리즘을 적용하였다. 무인항공기의 비선형 시뮬레이션을 통해 각 유도, 제어 알고리즘의 설계 결과를 확인하였다. 본 연구는 설계 결과를 토대로 실제 임무 비행을 수행하는 것을 목적으로 한다. 따라서 본 연구 내용을 기반으로 비행 시험을 통해 설계한 유도 제어 알고리즘의 비행 운용성을 확인하였다.

Keywords

OJSSBW_2019_v13n2_1_f0001.png 이미지

Fig. 1 Structure of Lateral controller

OJSSBW_2019_v13n2_1_f0003.png 이미지

Fig. 3 Course Control Result under Wind (state)

OJSSBW_2019_v13n2_1_f0004.png 이미지

Fig. 4 Course Control result under Wind (trajectory)

OJSSBW_2019_v13n2_1_f0005.png 이미지

Fig. 5 Course Control Result under Wind with Controller Switch Algorithm (state)

OJSSBW_2019_v13n2_1_f0012.png 이미지

Fig. 12 Hold (Stationary Loiter Circles) Algorithm

OJSSBW_2019_v13n2_1_f0013.png 이미지

Fig. 13 Vector Field for Stationary Loiter Circles

OJSSBW_2019_v13n2_1_f0014.png 이미지

Fig. 14 Guidance Simulation Result(Trajectory)

OJSSBW_2019_v13n2_1_f0015.png 이미지

Fig. 15 Guidance Simulation Result (Course Control)

OJSSBW_2019_v13n2_1_f0016.png 이미지

Fig. 16 Flight Test Result under Wind with Controller Switch Algorithm (State)

OJSSBW_2019_v13n2_1_f0017.png 이미지

Fig. 17 Flight Test Result under Wind with Controller Switch Algorithm (Trajectory)

OJSSBW_2019_v13n2_1_f0018.png 이미지

Fig. 18 Autonomous Flight Test Result (Trajectory)

OJSSBW_2019_v13n2_1_f0019.png 이미지

Fig. 19 Autonomous Flight Test Result during Fly-over, Fly-by (Course Control)

OJSSBW_2019_v13n2_1_f0020.png 이미지

Fig. 20 Autonomous Flight Test Result during Hold (Course Control)

OJSSBW_2019_v13n2_1_f0021.png 이미지

Fig. 2 Structure of Heading and Course controller

OJSSBW_2019_v13n2_1_f0022.png 이미지

Fig. 7 Structure of Guidance Algorithm

OJSSBW_2019_v13n2_1_f0023.png 이미지

Fig. 6 Course Control Result under Wind with Controller Switch Algorithm (trajectory)

OJSSBW_2019_v13n2_1_f0024.png 이미지

Fig. 8 Geometry between NED Frame and Navigation Frame

OJSSBW_2019_v13n2_1_f0025.png 이미지

Fig. 9 Fly-over Guidance Algorithm

OJSSBW_2019_v13n2_1_f0026.png 이미지

Fig. 10 Fly-over Arrival decision Algorithm

OJSSBW_2019_v13n2_1_f0027.png 이미지

Fig. 11 Fly-by Arrival decision Algorithm

References

  1. S. Hwang, S. Kim, Y. Lee, "Developing High Altitude Long Endurance (HALE) Solar-powered Unmanned Aerial Vehicle (UAV)," Journal of Aerospace System Engineering, Vol.10, No.1, pp.59-65, March, 2016. https://doi.org/10.20910/JASE.2016.10.1.59
  2. H. Ryu, H. Byun and S. Park, "Efficient Path Planning for Long Term Solar UAV Fligh," Journal of Aerospace System Engineering, Vol.8, No.4, pp.32-38, December, 2014. https://doi.org/10.20910/JASE.2014.8.4.032
  3. K. Jung, J. Sung, B. Kim, J. Je and S. Lee, "Design and flight test of path following system for an unmanned airship," Journal of Institute of Control, Robotics and Systems, Vol. 16 no. 5, pp. 498-509, 2010. https://doi.org/10.5302/J.ICROS.2010.16.5.498
  4. D. Lee, S. Kim and J. Suk, "Design of a track guidance algorithm for formation flight of UAVs." AIAA Guidance, Navigation, and Control Conference p. 1315, 2015.
  5. S. Lim, "Standoff target tracking using a vector field for multiple unmanned aircrafts," Journal of Intelligent & Robotic Systems, 69(1-4), pp. 347-360, 2013 https://doi.org/10.1007/s10846-012-9765-7
  6. S. Park, "Autonomous aerobatics on commanded path," Aerospace Science and Technology, vol. 22, no. 1 pp.64-74, 2012. https://doi.org/10.1016/j.ast.2011.06.007
  7. J. Osborn and R. Rysdyk, "Waypoint guidance for small UAVs in wind," AIAA Infotech@ Aerospace, vol. 193, no.1-4, pp.1-12, 2005.
  8. G. Byeon and S. Park, "Backward Path Following Under a Strong Headwind for UAV," J. of The Korean Society for Aeronautical and Space Sciences, vol. 42, no. 5, pp. 376-382, 2014. https://doi.org/10.5139/JKSAS.2014.42.5.376