DOI QR코드

DOI QR Code

Correlation between Cytokine and Chemokine levels and Clinical Severity in Children with Mycoplasma pneumoniae Pneumonia

  • Choi, Hee Joung (Department of Pediatrics, Keimyung University School of Medicine) ;
  • Kim, Yeo Hyang (Department of Pediatrics, School of Medicine, Kyungpook National University)
  • 투고 : 2018.06.08
  • 심사 : 2018.11.07
  • 발행 : 2019.04.25

초록

목적: 소아 마이코플라즈마 폐렴의 임상 중증도와 cytokine, chemokine의 상관 관계를 살펴보았다. 방법: 대상 환아의 임상소견과 검사소견을 후향적으로 조사하였고, interleukin (IL)-6, IL-8, IL-10, IL-18, inducible protein (IP)-10, macrophage inflammatory protein $(MIP)-1{\beta}$와 tumor necrosis factor $(TNF)-{\alpha}$를 비교 분석하였다. 결과: 총 72명이 포함되었고, 흉부 사진에서 대엽성 병변을 보이는 경우(29명)에서 기관지-미만성 병변을 보이는 경우(43명)보다 erythrocyte sedimentation rate (ESR), C-reactive protein (CRP)와 IL-18 수치가 의미 있게 높았다. 하지만, 스테로이드 사용 여부에 따른 차이는 보이지 않았다. CRP, ESR, lactate dehydrogenase (LDH), IL-18 그리고 IP-10 수치는 입원 전 발열 기간과 양의 상관관계를 보였다. 또한 ESR과 CRP 수치는 IL-18과, LDH는 IP-10과 양의 상관관계를 보였다. 결론: CRP, ESR, IL-18 그리고 IP-10 수치는 대엽성 폐렴이나 긴 발열 기간과 같은 질병의 중증도와 연관성을 가진다.

Purpose: The aim of this study was to evaluate the relationships between cytokine and chemokine levels and the clinical severity of Mycoplasma pneumoniae pneumonia. Methods: A retrospective analysis of clinical and laboratory parameters were performed. Serum levels of interleukin (IL)-6, IL-8, IL-10, IL-18, interferon-${\gamma}$-inducible protein-10 (IP-10), macrophage inflammatory $protein-1{\beta}$, and tumor necrosis $factor-{\alpha}$ were measured. The severity of patients' clinical course and radiologic findings were also assessed. Results: Seventy-two patients (35 males and 37 females) with a median age of 3.9 years (range, 1-16 years) were enrolled. Patients with lobar pneumonia (n=29) had significantly higher C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and IL-18 values than those with broncho-interstitial pneumonia (n=43). However, the cytokine and chemokine values did not differ between the group that was treated with corticosteroids (n=31) and the one that was not (n=41). The CRP, ESR, lactate dehydrogenase (LDH), IL-18, and IP-10 values showed positive correlations with fever duration prior to admission. The CRP and ESR values were positively correlated with IL-18, and LDH, with IP-10 levels. Conclusions: CRP, ESR, LDH, IL-18, and IP-10 values were associated with the severity of the disease, manifesting lobar pneumonia or prolonged fever duration prior to admission.

키워드

참고문헌

  1. Yang J, Hooper WC, Phillips DJ, Talkington DF. Cytokines in Mycoplasma pneumoniae infections. Cytokine Growth Factor Rev 2004;15:157-68. https://doi.org/10.1016/j.cytogfr.2004.01.001
  2. Waites KB, Talkington DF. Mycoplasma pneumoniae and its role as a human pathogen. Clin Microbiol Rev 2004;17:697-728. https://doi.org/10.1128/CMR.17.4.697-728.2004
  3. Youn YS, Lee KY. Mycoplasma pneumoniae pneumonia in children. Korean J Pediatr 2012;55:42-7. https://doi.org/10.3345/kjp.2012.55.2.42
  4. Akira S. The role of IL-18 in innate immunity. Curr Opin Immunol 2000;12:59-63. https://doi.org/10.1016/S0952-7915(99)00051-5
  5. Dinarello CA. Interleukin-18. Methods 1999;19:121-32. https://doi.org/10.1006/meth.1999.0837
  6. Chung HL, Kim SG, Shin IH. The relationship between serum endothelin (ET)-1 and wheezing status in the children with Mycoplasma pneumoniae pneumonia. Pediatr Allergy Immunol 2006;17:285-90. https://doi.org/10.1111/j.1399-3038.2006.00393.x
  7. Oishi T, Narita M, Matsui K, Shirai T, Matsuo M, Negishi J, et al. Clinical implications of interleukin-18 levels in pediatric patients with Mycoplasma pneumoniae pneumonia. J Infect Chemother 2011;17:803-6. https://doi.org/10.1007/s10156-011-0265-7
  8. Inamura N, Miyashita N, Hasegawa S, Kato A, Fukuda Y, Saitoh A, et al. Management of refractory Mycoplasma pneumoniae pneumonia: utility of measuring serum lactate dehydrogenase level. J Infect Chemother 2014;20:270-3. https://doi.org/10.1016/j.jiac.2014.01.001
  9. Bonecchi R, Galliera E, Borroni EM, Corsi MM, Locati M, Mantovani A. Chemokines and chemokine receptors: an overview. Front Biosci (Landmark Ed) 2009;14:540-51.
  10. Bradley JS, Byington CL, Shah SS, Alverson B, Carter ER, Harrison C, et al. The management of community-acquired pneumonia in infants and children older than 3 months of age: clinical practice guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America. Clin Infect Dis 2011;53:e25-76. https://doi.org/10.1093/cid/cir531
  11. Haugen J, Chandyo RK, Brokstad KA, Mathisen M, Ulak M, Basnet S, et al. Cytokine concentrations in plasma from children with severe and non-severe community acquired pneumonia. PLoS One 2015;10:e0138978. https://doi.org/10.1371/journal.pone.0138978
  12. Paats MS, Bergen IM, Hanselaar WE, Groeninx van Zoelen EC, Hoogsteden HC, Hendriks RW, et al. Local and systemic cytokine profiles in nonsevere and severe community-acquired pneumonia. Eur Respir J 2013;41:1378-85. https://doi.org/10.1183/09031936.00060112
  13. Stuyt RJ, Netea MG, Verschueren I, Fantuzzi G, Dinarello CA, Van Der Meer JW, et al. Role of interleukin-18 in host defense against disseminated Candida albicans infection. Infect Immun 2002;70:3284-6. https://doi.org/10.1128/IAI.70.6.3284-3286.2002
  14. Lauw FN, Branger J, Florquin S, Speelman P, van Deventer SJ, Akira S, et al. IL-18 improves the early antimicrobial host response to pneumococcal pneumonia. J Immunol 2002;168:372-8. https://doi.org/10.4049/jimmunol.168.1.372
  15. Narita M, Tanaka H, Abe S, Yamada S, Kubota M, Togashi T. Close association between pulmonary disease manifestation in Mycoplasma pneumoniae infection and enhanced local production of interleukin-18 in the lung, independent of gamma interferon. Clin Diagn Lab Immunol 2000;7:909-14. https://doi.org/10.1128/CDLI.7.6.909-914.2000
  16. Tanaka H, Narita M, Teramoto S, Saikai T, Oashi K, Igarashi T, et al. Role of interleukin-18 and T-helper type 1 cytokines in the development of Mycoplasma pneumoniae pneumonia in adults. Chest 2002;121:1493-7. https://doi.org/10.1378/chest.121.5.1493
  17. Narita M, Tanaka H, Yamada S, Abe S, Ariga T, Sakiyama Y. Significant role of interleukin-8 in pathogenesis of pulmonary disease due to Mycoplasma pneumoniae infection. Clin Diagn Lab Immunol 2001;8:1028-30. https://doi.org/10.1128/CDLI.8.5.1028-1030.2001
  18. Chmura K, Bai X, Nakamura M, Kandasamy P, McGibney M, Kuronuma K, et al. Induction of IL-8 by Mycoplasma pneumoniae membrane in BEAS-2B cells. Am J Physiol Lung Cell Mol Physiol 2008;295:L220-30. https://doi.org/10.1152/ajplung.90204.2008
  19. Miyashita N, Kawai Y, Inamura N, Tanaka T, Akaike H, Teranishi H, et al. Setting a standard for the initiation of steroid therapy in refractory or severe Mycoplasma pneumoniae pneumonia in adolescents and adults. J Infect Chemother 2015;21:153-60. https://doi.org/10.1016/j.jiac.2014.10.008
  20. Wang M, Wang Y, Yan Y, Zhu C, Huang L, Shao X, et al. Clinical and laboratory profiles of refractory Mycoplasma pneumoniae pneumonia in children. Int J Infect Dis 2014;29:18-23. https://doi.org/10.1016/j.ijid.2014.07.020
  21. Zhang Y, Zhou Y, Li S, Yang D, Wu X, Chen Z. The clinical characteristics and predictors of refractory Mycoplasma pneumoniae pneumonia in children. PLoS One 2016;11:e0156465. https://doi.org/10.1371/journal.pone.0156465
  22. Matsuda K, Narita M, Sera N, Maeda E, Yoshitomi H, Ohya H, et al. Gene and cytokine profile analysis of macrolide-resistant Mycoplasma pneumoniae infection in Fukuoka, Japan. BMC Infect Dis 2013;13:591. https://doi.org/10.1186/1471-2334-13-591
  23. Yang EA, Lee KY. Additional corticosteroids or alternative antibiotics for the treatment of macrolideresistant Mycoplasma pneumoniae pneumonia. Korean J Pediatr 2017;60:245-7. https://doi.org/10.3345/kjp.2017.60.8.245
  24. Lu A, Wang C, Zhang X, Wang L, Qian L. Lactate dehydrogenase as a biomarker for prediction of refractory Mycoplasma pneumoniae pneumonia in children. Respir Care 2015;60:1469-75. https://doi.org/10.4187/respcare.03920