Abstract
Recently, plastic materials have become more diversified, and the development of materials with excellent mechanical properties and plasticity has enabled wider application, miniaturization, and refinement of injection molded products. As a result, the utilization of these products in household goods, electronics, automotive parts, and aircraft parts is increasing in almost all industries. Injection molded parts are often used externally on finished commercial products. This means that the injection mold industry is very important to the value of these products. For this reason, the industry is performing research on the precision and efficiency of the injection molding process. In this study, we investigated the applicability of the core in core cooling method to the problem of product deformation due to temperature variation in existing injection mold designs. We also characterized the cooling performance of an injection mold when using this cooling method.