DOI QR코드

DOI QR Code

Dental alloplastic bone substitutes currently available in Korea

  • Ku, Jeong-Kui (Department of Oral and Maxillofacial Surgery, Asan Medical Center) ;
  • Hong, Inseok (Department of Oral and Maxillofacial Surgery, School of Dentistry and Institute of Oral Bioscience, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Chonbuk National University) ;
  • Lee, Bu-Kyu (Department of Oral and Maxillofacial Surgery, Asan Medical Center) ;
  • Yun, Pil-Young (Department of Oral and Maxillofacial Surgery, Section of Dentistry, Armed Forces Capital Hospital) ;
  • Lee, Jeong Keun (Department of Oral and Maxillofacial Surgery, Institute of Oral Health Science, Ajou University School of Medicine)
  • 투고 : 2019.03.24
  • 심사 : 2019.03.28
  • 발행 : 2019.04.30

초록

As dental implant surgery and bone grafts were widely operated in Korean dentist, many bone substitutes are commercially available, currently. For commercially used in Korea, all bone substitutes are firstly evaluated by the Ministry of Health and Welfare (MOHW) for safety and efficacy of the product. After being priced, classified, and registration by the Health Insurance Review and Assessment Service (HIRA), the post-application management is obligatory for the manufacturer (or representative importer) to receive a certificate of Good Manufacturing Practice by Ministry of Food and Drug Safety. Currently, bone substitutes are broadly classified into C group (bone union and fracture fixation), T group (human tissue), L group (general and dental material) and non-insurance material group in MOHW notification No. 2018-248. Among them, bone substitutes classified as dental materials (L7) are divided as xenograft and alloplastic bone graft. The purpose of this paper is to analyze alloplastic bone substitutes of 37 products in MOHW notification No. 2018-248 and to evaluate the reference level based on the ISI Web of Knowledge, PubMed, EMBASE (1980-2019), Cochrane Database, and Google Scholar using the criteria of registered or trademarked product name.

키워드

참고문헌

  1. Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury 2005;36:1392-404. https://doi.org/10.1016/j.injury.2005.07.019
  2. Delloye C, Cornu O, Druez V, Barbier O. Bone allografts: what they can offer and what they cannot. J Bone Joint Surg Br 2007;89:574-9.
  3. Dalkyz M, Ozcan A, Yapar M, Gokay N, Yuncu M. Evaluation of the effects of different biomaterials on bone defects. Implant Dent 2000;9:226-35. https://doi.org/10.1097/00008505-200009030-00008
  4. Kim YK, Yun PY, Lim SC, Kim SG. Sinus bone graft using $OSTEON^{(R)}$ and $BioOss^{(R)}$ : histologic comparative study. Implantology 2007;11:4-18.
  5. Kim YK. Systematic classification and application of alloplastic bony substitutes and autogenous teeth bone graft material. J Dent Implant Res 2009;28:77-88.
  6. Tadic D, Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials 2004;25:987-94. https://doi.org/10.1016/S0142-9612(03)00621-5
  7. Ministry of Food and Drug Safety. Medical device manufacturing and quality control standards (No. 2016-156) [Internet]. Sejong: National Law Information Center [cited 2017 Mar 1]. Available from: http://www.law.go.kr/LSW/admRulLsInfoP.do?admRulSeq=2100000073289.
  8. Ministry of Health & Welfare. No. 2018-248. Medical device price list [Internet]. Wonju: Health Insurance Review & Assessment Service [cited 2018 Nov 30]. Available from: https://www.hira.or.kr/rd/insuadtcrtr/bbsView.do?pgmid=HIRAA030069000400&brdScnBltNo=4&brdBltNo=51151.
  9. Wright JG, Swiontkowski MF, Heckman JD. Introducing levels of evidence to the journal. J Bone Joint Surg Am 2003;85:1-3.
  10. Kurien T, Pearson RG, Scammell BE. Bone graft substitutes currently available in orthopaedic practice: the evidence for their use. Bone Joint J 2013;95:583-97. https://doi.org/10.1302/0301-620X.95B5.30286
  11. U.S. Food and Drug Administration (FDA). Cerasorb: 510(k) summary [Internet]. Silver Spring (MD): FDA [cited 2017 Sep 17]. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf11/K113282.pdf.
  12. U.S. Food and Drug Administration (FDA). MBCP+: 510(k) summary [Internet]. Silver Spring (MD): FDA [cited 2007 Jul 30]. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf9/K093122.pdf.
  13. U.S. Food and Drug Administration (FDA). Osteon: 510(k) summary [Internet]. Silver Spring (MD): FDA [cited 2010 Jul 8]. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf10/K102015.pdf.
  14. U.S. Food and Drug Administration (FDA). Osteon II: 510(k) summary [Internet]. Silver Spring (MD): FDA [cited 2012 Jan 17]. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf11/K112716.pdf.
  15. U.S. Food and Drug Administration (FDA). Osteon III: 510(k) summary [Internet]. Silver Spring (MD): FDA [cited 2016 Sep 14]. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf15/K153676.pdf.
  16. U.S. Food and Drug Administration (FDA). MBCP: 510(k) summary [Internet]. Silver Spring (MD): FDA [cited 2005 May 3]. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf5/K051885.pdf.
  17. U.S. Food and Drug Administration (FDA). Kasios TCP: 510(k) summary [Internet]. Silver Spring (MD): FDA [cited 2004 Nov 10]. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf4/K042340.pdf.
  18. Lim HC, Jung UW, You H, Lee JS. Randomized clinical trial of ridge preservation using porcine bone/cross-linked collagen vs. bovine bone/non-cross-linked collagen: cone beam computed tomographic analysis. Clin Oral Implant Res 2017;28:1492-500. https://doi.org/10.1111/clr.13017
  19. Lee JH, Lee JS, Baek WS, Lim HC, Cha JK, Choi SH, et al. Assessment of dehydrothermally cross-linked collagen membrane for guided bone regeneration around peri-implant dehiscence defects: a randomized single-blinded clinical trial. J Periodontal Implant Sci 2015;45:229-37. https://doi.org/10.5051/jpis.2015.45.6.229
  20. Benic GI, Joo MJ, Yoon SR, Cha JK, Jung UW. Primary ridge augmentation with collagenated xenogenic block bone substitute in combination with collagen membrane and rhBMP-2: a pilot histological investigation. Clin Oral Implants Res 2017;28:1543-52. https://doi.org/10.1111/clr.13024
  21. Kwak EJ, Cha IH, Nam W, Yook JI, Park YB, Kim HJ. Effects of locally administered rhBMP-2 and bisphosphonate on bone regeneration in the rat fibula. Oral Dis 2018;24:1042-56. https://doi.org/10.1111/odi.12864
  22. Papez J, Dostalova T, Chleborad K, Kriz P, Strnad J. Chronological age as factor influencing the dental implant osseointegration in the jaw bone. Prague Med Rep 2018;119:43-51. https://doi.org/10.14712/23362936.2018.4
  23. Petrenko YA. Properties of mesenchymal stromal cells during 3D culturing within scaffolds of different origin. Probl Cryobiol 2012;22:144-7.
  24. Horkavcova D, Zitkova K, Rohanova D, Helebrant A, Cilova Z. The Resorption of ${\beta}$-TCP and HA materials under conditions similar to those in living organisms. Ceram Silik 2010;54:398-404.
  25. Strnadova M, Strnad Z, Sponer P, Jirosova J, Strnad J. In vivo behaviour of the synthetic porous hydroxyapatite prepared by low temperature microwave processing and comparison with deproteinized bovine bone. Key Eng Mater 2012;493-494:236-41.
  26. Rohanova D, Horkavcova D, Helebrant A, Boccaccini AR. Assessment of in vitro testing approaches for bioactive inorganic materials. J Non-Cryst Solids 2016;432:53-9. https://doi.org/10.1016/j.jnoncrysol.2015.03.016
  27. Lee DSH, Pai Y, Chang S. Effect of thermal treatment of the hydroxyapatite powders on the micropore and microstructure of porous biphasic calcium phosphate composite granules. J Biomater Nanobiotechnology 2013;4:114-8. https://doi.org/10.4236/jbnb.2013.42015
  28. Dorozhkin SV. Calcium orthophosphate-based bioceramics and its clinical applications. In: Kaur G, ed. Clinical applications of biomaterials: state-of-the-art progress, trends, and novel approaches. Cham: Springer; 2017:123-226.
  29. Dorozhkin SV. Multiphasic calcium orthophosphate (CaPO4) bioceramics and their biomedical applications. Ceram Int 2016;42:6529-54. https://doi.org/10.1016/j.ceramint.2016.01.062
  30. Lee SM. Clinical evaluation of efficacy and safety of NOVOSIS-inject containing bmp-2 for socket preservation after extraction of a single-rooted tooth. Clin Oral Implant Res 2018;29:318. https://doi.org/10.1111/clr.203_13358
  31. Chang AR, Cho TH, Hwang SJ. Receptor activator of nuclear factor kappa-B ligand-induced local osteoporotic canine mandible model for the evaluation of peri-implant bone regeneration. Tissue Eng Part C Methods 2017;23:781-94. https://doi.org/10.1089/ten.tec.2017.0196
  32. Song J, Kim J, Woo HM, Yoon B, Park H, Park C, et al. Repair of rabbit radial bone defects using bone morphogenetic protein-2 combined with 3D porous silk fibroin/${\beta}$-tricalcium phosphate hybrid scaffolds. J Biomater Sci Polym Ed 2018;29:716-29. https://doi.org/10.1080/09205063.2018.1438126
  33. Park HJ, Min KD, Lee MC, Kim SH, Lee OJ, Ju HW, et al. Fabrication of 3D porous SF/${\beta}$-TCP hybrid scaffolds for bone tissue reconstruction. J Biomed Mater Res A 2016;104:1779-87. https://doi.org/10.1002/jbm.a.35711
  34. Alharissy M, AbouSulaiman A, Manadili A, Dayoub S. Radio-graphic alternations in alveolar bone dimensions following socket preservation using two bone substitutes. J Int Dent Med Res 2018;11:906-10.
  35. Naineni R, Ravi V, Subbaraya DK, Prasanna JS, Panthula VR, Koduganti RR. Effect of alendronate with ${\beta}$ - TCP bone substitute in surgical therapy of periodontal intra-osseous defects: a randomized controlled clinical trial. J Clin Diagn Res 2016;10:ZC113-7.
  36. Miramond T, Borget P, Baroth S, Guy D. Comparative critical study of commercial calcium phosphate bone substitutes in terms of physic-chemical properties. Key Eng Mater 2014;587:63-8. https://doi.org/10.4028/www.scientific.net/KEM.587.63
  37. Jang CH, Cho YB, Yang HC, Kim JS, Choi CH, Jang SJ, et al. Effect of piperacillin-tazobactam coated ${\beta}$-tricalcium phosphate for mastoid obliteration in otitis media. Int J Pediatr Otorhinolaryngol 2011;75:631-4. https://doi.org/10.1016/j.ijporl.2011.01.039
  38. Zijderveld SA, Zerbo IR, van den Bergh JP, Schulten EA, ten Bruggenkate CM. Maxillary sinus floor augmentation using a betatricalcium phosphate (Cerasorb) alone compared to autogenous bone grafts. Int J Oral Maxillofac Implants 2005;20:432-40.
  39. Esposito M, Grusovin MG, Felice P, Karatzopoulos G, Worthington HV, Coulthard P. The efficacy of horizontal and vertical bone augmentation procedures for dental implants - a Cochrane systematic review. Eur J Oral Implantol 2009;2:167-84.
  40. Horch HH, Sader R, Pautke C, Neff A, Deppe H, Kolk A. Synthetic, pure-phase beta-tricalcium phosphate ceramic granules (Cerasorb) for bone regeneration in the reconstructive surgery of the jaws. Int J Oral Maxillofac Surg 2006;35:708-13. https://doi.org/10.1016/j.ijom.2006.03.017
  41. Horowitz RA, Mazor Z, Miller RJ, Krauser J, Prasad HS, Rohrer MD. Clinical evaluation alveolar ridge preservation with a betatricalcium phosphate socket graft. Compend Contin Educ Dent 2009;30:588-90, 592, 594 passim; quiz 604, 606.
  42. Dori F, Arweiler N, Gera I, Sculean A. Clinical evaluation of an enamel matrix protein derivative combined with either a natural bone mineral or beta-tricalcium phosphate. J Periodontol 2005;76:2236-43. https://doi.org/10.1902/jop.2005.76.12.2236
  43. Bokan I, Bill JS, Schlagenhauf U. Primary flap closure combined with Emdogain alone or Emdogain and Cerasorb in the treatment of intra-bony defects. J Clin Periodontol 2006;33:885-93. https://doi.org/10.1111/j.1600-051X.2006.01010.x
  44. Harel N, Moses O, Palti A, Ormianer Z. Long-term results of implants immediately placed into extraction sockets grafted with ${\beta}$-tricalcium phosphate: a retrospective study. J Oral Maxillofac Surg 2013;71:e63-8.
  45. Klein M, Goetz H, Pazen S, Al-Nawas B, Wagner W, Duschner H. Pore characteristics of bone substitute materials assessed by microcomputed tomography. Clin Oral Implants Res 2009;20:67-74.
  46. Neamat A, Gawish A, Gamal-Eldeen AM. beta-Tricalcium phosphate promotes cell proliferation, osteogenesis and bone regeneration in intrabony defects in dogs. Arch Oral Biol 2009;54:1083-90. https://doi.org/10.1016/j.archoralbio.2009.09.003
  47. Kasten P, Beyen I, Niemeyer P, Luginbuhl R, Bohner M, Richter W. Porosity and pore size of beta-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study. Acta Biomater 2008;4:1904-15. https://doi.org/10.1016/j.actbio.2008.05.017
  48. Bernhardt A, Lode A, Peters F, Gelinsky M. Novel ceramic bone replacement material $Osbone^{(R)}$ in a comparative in vitro study with osteoblasts. Clin Oral Implants Res 2011;22:651-7. https://doi.org/10.1111/j.1600-0501.2010.02015.x
  49. Bernhardt A, Dittrich R, Lode A, Despang F, Gelinsky M. Nanocrystalline spherical hydroxyapatite granules for bone repair: in vitro evaluation with osteoblast-like cells and osteoclasts. J Mater Sci Mater Med 2013;24:1755-66. https://doi.org/10.1007/s10856-013-4933-2
  50. Klein MO, Kammerer PW, Scholz T, Moergel M, Kirchmaier CM, Al-Nawas B. Modulation of platelet activation and initial cytokine release by alloplastic bone substitute materials. Clin Oral Implants Res 2010;21:336-45. https://doi.org/10.1111/j.1600-0501.2009.01830.x
  51. Bernhardt A, Lode A, Peters F, Gelinsky M. Comparative evaluation of different calcium phosphate-based bone graft granules - an in vitro study with osteoblast-like cells. Clin Oral Implants Res 2013;24:441-9. https://doi.org/10.1111/j.1600-0501.2011.02350.x
  52. Ghanaati S, Barbeck M, Orth C, Willershausen I, Thimm BW, Hoffmann C, et al. Influence of ${\beta}$-tricalcium phosphate granule size and morphology on tissue reaction in vivo. Acta Biomater 2010;6:4476-87. https://doi.org/10.1016/j.actbio.2010.07.006
  53. Handschel J, Berr K, Depprich R, Naujoks C, Kubler NR, Meyer U, et al. Compatibility of embryonic stem cells with biomaterials. J Biomater Appl 2009;23:549-60. https://doi.org/10.1177/0885328208094305
  54. Zheng H, Bai Y, Shih MS, Hoffmann C, Peters F, Waldner C, et al. Effect of a ${\beta}$-TCP collagen composite bone substitute on healing of drilled bone voids in the distal femoral condyle of rabbits. J Biomed Mater Res B Appl Biomater 2014;102:376-83. https://doi.org/10.1002/jbm.b.33016
  55. Bizenjima T, Takeuchi T, Seshima F, Saito A. Effect of poly (lactide-co-glycolide) (PLGA)-coated beta-tricalcium phosphate on the healing of rat calvarial bone defects: a comparative study with pure-phase beta-tricalcium phosphate. Clin Oral Implants Res 2016;27:1360-7. https://doi.org/10.1111/clr.12744
  56. Bernhardt A, Lode A, Peters F, Gelinsky M. Optimization of culture conditions for osteogenically-induced mesenchymal stem cells in ${\beta}$-tricalcium phosphate ceramics with large interconnected channels. J Tissue Eng Regen Med 2011;5:444-53. https://doi.org/10.1002/term.331
  57. Kurkcu M, Benlidayi ME, Cam B, Sertdemir Y. Anorganic bovinederived hydroxyapatite vs ${\beta}$-tricalcium phosphate in sinus augmentation: a comparative histomorphometric study. J Oral Implantol 2012;38:519-26. https://doi.org/10.1563/AAID-JOI-D-11-00061
  58. Khojasteh A, Eslaminejad MB, Nazarian H. Mesenchymal stem cells enhance bone regeneration in rat calvarial critical size defects more than platelete-rich plasma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106:356-62; discussion 363. https://doi.org/10.1016/j.tripleo.2007.10.017
  59. Badwelan M, Alkindi M, Ramalingam S, Nooh N, Al Hezaimi K. The efficacy of recombinant platelet-derived growth factor on beta-tricalcium phosphate to regenerate femoral critical sized segmental defects: longitudinal in vivo micro-CT study in a rat model. J Invest Surg 2018. doi: 10.1080/08941939.2018.1519048. [Epub ahead of print]
  60. Giuliani A, Manescu A, Larsson E, Tromba G, Luongo G, Piattelli A, et al. In vivo regenerative properties of coralline-derived (biocoral) scaffold grafts in human maxillary defects: demonstrative and comparative study with beta-tricalcium phosphate and biphasic calcium phosphate by synchrotron radiation x-ray microtomography. Clin Implant Dent Relat Res 2014;16:736-50. https://doi.org/10.1111/cid.12039
  61. Arbez B, Kun-Darbois JD, Convert T, Guillaume B, Mercier P, Hubert L, et al. Biomaterial granules used for filling bone defects constitute 3D scaffolds: porosity, microarchitecture and molecular composition analyzed by microCT and Raman microspectroscopy. J Biomed Mater Res B Appl Biomater 2019;107:415-23. https://doi.org/10.1002/jbm.b.34133
  62. Emanuel N, Rosenfeld Y, Cohen O, Applbaum YH, Segal D, Barenholz Y. A lipid-and-polymer-based novel local drug delivery system--BonyPid™: from physicochemical aspects to therapy of bacterially infected bones. J Control Release 2012;160:353-61. https://doi.org/10.1016/j.jconrel.2012.03.027
  63. Catros S, Zwetyenga N, Bareille R, Brouillaud B, Renard M, Amedee J, et al. Subcutaneous-induced membranes have no osteoinductive effect on macroporous HA-TCP in vivo. J Orthop Res 2009;27:155-61. https://doi.org/10.1002/jor.20738
  64. Salim AS, Al Hijazi A. Evaluation of the effect of synthetic biomaterial (calcium phosphate ceramic) on healing of extracted tooth socket. J Baghdad College Dent 2010;22:57-61.
  65. Kursun-Cakmak ES, Akbulut N, Oztas DD. Comparative evaluation of the radiopacity of bone graft materials used in dentistry. J Contemp Dent 2017;7:150-5. https://doi.org/10.5005/jp-journals-10031-1204
  66. You H, Yoon SR, Lim HC, Lee JS, Jung UW, Choi SH. Bone regenerative efficacy of limited-dose escherichia coli-derived rh-BMP-2 with biphasic calcium phosphate carrier in rabbit calvarial defect model. Implant Dent 2016;25:16-23. https://doi.org/10.1097/ID.0000000000000364
  67. Kumar A, Mahendra J, Samuel S, Govindraj J, Loganathan T, Vashum Y, et al. Platelet-rich fibrin/biphasic calcium phosphate impairs osteoclast differentiation and promotes apoptosis by the intrinsic mitochondrial pathway in chronic periodontitis. J Periodontol 2019;90:61-71. https://doi.org/10.1002/JPER.17-0306
  68. Fabrication method of a novel artificial cortical bone using a multi-pass extrusion process. KR101241642B1 [Internet]. Daejeon: Korean Intellectual Property Office [cited 2012 Feb 6]. Available from: http://kpat.kipris.or.kr/kpat/1020100072191.pdf?method=fullText&applno=1020100072191&pub_reg=P.
  69. (WO2012015226) Fabrication method of a novel artificial cortical bone using a multi-pass extrusion process [Internet]. Geneva: World Intellectual Property Organization [cited 2012 Feb 2]. Available from: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2012015226.
  70. Lee MJ, Kim BO, Yu SJ. Clinical evaluation of a biphasic calcium phosphate grafting material in the treatment of human periodontal intrabony defects. J Periodontal Implant Sci 2012;42:127-35. https://doi.org/10.5051/jpis.2012.42.4.127
  71. Alagl AS, Madi M. Localized ridge augmentation in the anterior maxilla using titanium mesh, an alloplast, and a nano-bone graft: a case report. J Int Med Res 2018;46:2001-7. https://doi.org/10.1177/0300060518758226
  72. Kim BS, Yang SS, You HK, Shin HI, Lee J. Fucoidan-induced osteogenic differentiation promotes angiogenesis by inducing vascular endothelial growth factor secretion and accelerates bone repair. J Tissue Eng Regen Med 2018;12:e1311-24. https://doi.org/10.1002/term.2509
  73. Yang DH, Park HN, Bae MS, Lee JB, Heo DN, Lee WJ, et al. Evaluation of GENESIS-BCP™ scaffold composed of hydroxyapatite and ${\beta}$-tricalcium phosphate on bone formation. Macromol Res 2012;20:627-33. https://doi.org/10.1007/s13233-012-0090-6
  74. Kim BS, Lee J. Enhanced bone healing by improved fibrin-clot formation via fibrinogen adsorption on biphasic calcium phosphate granules. Clin Oral Implants Res 2015;26:1203-10. https://doi.org/10.1111/clr.12431
  75. Seok H, Lee SK, Kim SG, Kang TY, Lee MJ, Chae WS. Migration of alloplastic bone graft material in infected conditions: a case study and animal experiment. J Oral Maxillofac Surg 2014;72:1093.e1-11.
  76. Kim BS, Yang SS, Lee J. Precoating of biphasic calcium phosphate bone substitute with atelocollagen enhances bone regeneration through stimulation of osteoclast activation and angiogenesis. J Biomed Mater Res A 2017;105:1446-56. https://doi.org/10.1002/jbm.a.36032
  77. Lee SH, Kim SW, Lee JI, Yoon HJ. The effect of platelet-rich fibrin on bone regeneration and angiogenesis in rabbit cranial defects. Tissue Eng Regen Med 2015;12:362-70. https://doi.org/10.1007/s13770-015-0031-5
  78. Kim MS, Lee JH, Jung UW, Kim CS, Choi SH, Cho KS. A cumulative survival rate of implants installed on posterior maxilla augmented using MBCP after 2 years of loading: a retrospective clinical study. J Korean Acad Periodontol 2008;38:669-78. https://doi.org/10.5051/jkape.2008.38.4.669
  79. Lee JH, Jung UW, Kim CS, Choi SH, Cho KS. Maxillary sinus augmentation using Macroporous Biphasic Calcium Phosphate (MBCP™): three case report with histologic evaluation. J Korean Acad Periodontol 2006;36:567-77. https://doi.org/10.5051/jkape.2006.36.2.567
  80. Le Guehennec L, Goyenvalle E, Aguado E, Pilet P, Bagot D'Arc M, Bilban M, et al. MBCP biphasic calcium phosphate granules and tissucol fibrin sealant in rabbit femoral defects: the effect of fibrin on bone ingrowth. J Mater Sci Mater Med 2005;16:29-35.
  81. Lee JH, Jung UW, Kim CS, Choi SH, Cho KS. Histologic and clinical evaluation for maxillary sinus augmentation using macroporous biphasic calcium phosphate in human. Clin Oral Implants Res 2008;19:767-71. https://doi.org/10.1111/j.1600-0501.2008.01520.x
  82. Wagner W, Wiltfang J, Pistner H, Yildirim M, Ploder B, Chapman M, et al. Bone formation with a biphasic calcium phosphate combined with fibrin sealant in maxillary sinus floor elevation for delayed dental implant. Clin Oral Implants Res 2012;23:1112-7. https://doi.org/10.1111/j.1600-0501.2011.02275.x
  83. Kim CS, Kim SC, Claire D, Elodie S, Daculsi G. Eight-year clinical follow-up of sinus grafts with micro-macroporous biphasic calcium phosphate granules. Key Eng Mater 2014;587:321-4.
  84. Rodriguez C, Jean A, Mitja S, Daculsi G. Five years clinical follow up bone regeneration with CaP bioceramics. Key Eng Mater 2008;361-363:1339-42. https://doi.org/10.4028/www.scientific.net/KEM.361-363.1339
  85. Jegoux F, Goyenvalle E, Cognet R, Malard O, Moreau F, Daculsi G, et al. Reconstruction of irradiated bone segmental defects with a biomaterial associating MBCP+(R), microstructured collagen membrane and total bone marrow grafting: an experimental study in rabbits. J Biomed Mater Res A 2009;91:1160-9.
  86. Miramond T, Aguado E, Goyenvalle E, Moreau F, Borget P, Daculsi G. Osteopromotion of biphasic calcium phosphate granules in critical size defects after osteonecrosis induced by focal heating insults. IRBM 2013;34:337-41. https://doi.org/10.1016/j.irbm.2013.07.004
  87. Pereira RC, Benelli R, Canciani B, Scaranari M, Daculsi G, Cancedda R, et al. Beta tricalcium phosphate ceramic triggers fast and robust bone formation by human mesenchymal stem cells. J Tissue Eng Regen Med 2019. doi: 10.1002/term.2848. [Epub ahead of print]
  88. Miramond T, Corre P, Borget P, Moreau F, Guicheux J, Daculsi G, et al. Osteoinduction of biphasic calcium phosphate scaffolds in a nude mouse model. J Biomater Appl 2014;29:595-604. https://doi.org/10.1177/0885328214537859
  89. Houshmand B, Tabibzadeh Z, Motamedian SR, Kouhestani F. Effect of metformin on dental pulp stem cells attachment, proliferation and differentiation cultured on biphasic bone substitutes. Arch Oral Biol 2018;95:44-50. https://doi.org/10.1016/j.archoralbio.2018.07.012
  90. Miramond T, Borget P, Baroth S, Daculsi G. Comparative critical study of commercial calcium phosphate bone substitutes in terms of physic-chemical properties. Key Eng Mater 2014;587:63-8.
  91. Kim KI, Park S, Im GI. Osteogenic differentiation and angiogenesis with cocultured adipose-derived stromal cells and bone marrow stromal cells. Biomaterials 2014;35:4792-804. https://doi.org/10.1016/j.biomaterials.2014.02.048
  92. Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater 2017;2:224-47. https://doi.org/10.1016/j.bioactmat.2017.05.007
  93. Habibovic P, Kruyt MC, Juhl MV, Clyens S, Martinetti R, Dolcini L, et al. Comparative in vivo study of six hydroxyapatite-based bone graft substitutes. J Orthop Res 2008;26:1363-70. https://doi.org/10.1002/jor.20648
  94. Kim YK, Yun PY, Kim SG, Lim SC. Analysis of the healing process in sinus bone grafting using various grafting materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107:204-11. https://doi.org/10.1016/j.tripleo.2008.07.021
  95. Lim HC, Kim KT, Lee JS, Jung UW, Choi SH. In vivo comparative investigation of three synthetic graft materials with varying compositions processed using different methods. Int J Oral Maxillofac Implants 2015;30:1280-6. https://doi.org/10.11607/jomi.3999
  96. Lim HC, Zhang ML, Lee JS, Jung UW, Choi SH. Effect of different hydroxyapatite:${\beta}$-tricalcium phosphate ratios on the osteoconductivity of biphasic calcium phosphate in the rabbit sinus model. Int J Oral Maxillofac Implants 2015;30:65-72. https://doi.org/10.11607/jomi.3709
  97. Kim DM, Nevins ML, Lin Z, Fateh A, Kim SW, Schupbach P, et al. The clinical and histologic outcome of dental implant in large ridge defect regenerated with alloplast: a randomized controlled preclinical trial. J Oral Implantol 2013;39:148-53. https://doi.org/10.1563/AAID-JOI-D-12-00242
  98. Lim HC, Hong JY, Lee JS, Jung UW, Choi SH. Late-term healing in an augmented sinus with different ratios of biphasic calcium phosphate: a pilot study using a rabbit sinus model. J Periodontal Implant Sci 2016;46:57-69. https://doi.org/10.5051/jpis.2016.46.1.57
  99. Abdulghani MM, Farha LS. Clinical and experimental study to evaluate the effect of biphasic calcium phosphate collagen composite (cpcc) on healing of bone defects after oral surgical procedures. Al-Kindy College Med J 2017;13:11-20.
  100. Hussein LA, Hassan TAL. The effectiveness of oxidized regenerated cellulose as a graft material in transalveolar osteotome sinus lift procedure. J Craniofac Surg 2017;28:1766-71. https://doi.org/10.1097/SCS.0000000000003943
  101. Park YH, Choi SH, Cho KS, Lee JS. Dimensional alterations following vertical ridge augmentation using collagen membrane and three types of bone grafting materials: a retrospective observational study. Clin Implant Dent Relat Res 2017;19:742-9. https://doi.org/10.1111/cid.12502
  102. Kim DM, Camelo M, Nevins M, Fateh A, Schupbach P, Nevins M. Alveolar ridge reconstruction with a composite alloplastic biomaterial. Int J Periodontics Restorative Dent 2012;32:e204-9.
  103. Chee YD, Seon HK. Increase of the width of peri-implant keratinized tissue using apically positioned flap: case report. J Dent Rehabil Appl Sci 2013;29:407-17. https://doi.org/10.14368/jdras.2013.29.4.407
  104. Lee JB. Selectable implant removal methods due to mechanical and biological failures. Case Rep Dent 2017;2017:9640517.
  105. Badiea RA. Evaluation of treatment of intra-bony defects with a mixture of ${\beta}$-tricalcium phosphate - hydroxyapatite granules and oily calcium hydroxide suspension. J Baghdad College Dent 2013;25:103-9. https://doi.org/10.12816/0015006
  106. Seo GY, Thoma DS, Jung UW, Lee JS. Increasing the tissue thickness at implant sites using guided bone regeneration and an additional collagen matrix: histologic observations in beagle dogs. J Biomed Mater Res B Appl Biomater 2019;107:741-9. https://doi.org/10.1002/jbm.b.34168
  107. Bucchi C, Borie E, Arias A, Dias FJ, Fuentes R. Radiopacity of alloplastic bone grafts measured with cone beam computed tomography: an analysis in rabbit calvaria. Bosn J Basic Med Sci 2016;17:61-6. https://doi.org/10.17305/bjbms.2016.1482
  108. Chung SM, Jung IK, Yoon BH, Choi BR, Kim DM, Jang JS. Evaluation of different combinations of biphasic calcium phosphate and growth factors for bone formation in calvarial defects in a rabbit model. Int J Periodontics Restorative Dent 2016;36 Suppl:s49-59.
  109. Al Mukhtar YH, Abid WK. Effect of Osteon II collagen with hyaluronic acid and collagen membrane on bone healing process in rabbits: a radiograghical study. Int J Enhanc Res Sci Tech Eng 2016;5:36-46.
  110. Khojasteh A, Motamedian SR, Rad MR, Shahriari MH, Nadjmi N. Polymeric vs hydroxyapatite-based scaffolds on dental pulp stem cell proliferation and differentiation. World J Stem Cells 2015;7:1215-21. https://doi.org/10.4252/wjsc.v7.i10.1215
  111. Tallarico M, Xhanari E, Cocchi F, Canullo L, Schipani F, Meloni SM. Accuracy of computer-assisted template-based implant placement using a conventional impression and scan model or digital impression: a preliminary report from a randomized controlled trial. J Oral Sci Rehabil 2017;3:8-16.
  112. Kang KJ, Lee MS, Moon CW, Lee JH, Yang HS, Jang YJ. In vitro and in vivo dentinogenic efficacy of human dental pulp-derived cells induced by demineralized dentin matrix and HA-TCP. Stem Cells Int 2017;2017:2416254.

피인용 문헌

  1. Sinus membrane elevation and implant placement vol.46, pp.4, 2019, https://doi.org/10.5125/jkaoms.2020.46.4.292
  2. Alloplastic Bone Substitutes for Periodontal and Bone Regeneration in Dentistry: Current Status and Prospects vol.14, pp.5, 2021, https://doi.org/10.3390/ma14051096
  3. Collagenated Porcine Heterologous Bone Grafts: Histomorphometric Evaluation of Bone Formation Using Different Physical Forms in a Rabbit Cancellous Bone Model vol.26, pp.5, 2019, https://doi.org/10.3390/molecules26051339
  4. Synthetic Injectable Biomaterials for Alveolar Bone Regeneration in Animal and Human Studies vol.14, pp.11, 2021, https://doi.org/10.3390/ma14112858
  5. Enhanced Bone Regeneration in Variable-Type Biphasic Ceramic Phosphate Scaffolds Using rhBMP-2 vol.22, pp.21, 2019, https://doi.org/10.3390/ijms222111485