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CHARACTERIZATIONS OF p-ADIC CENTRAL CAMPANATO

SPACES VIA COMMUTATOR OF p-ADIC HARDY TYPE

OPERATORS

Qianjun He, Mingquan Wei, and Dunyan Yan

Abstract. In this paper, we give some characterizations of p-adic central
Campanato spaces via the boundedness of commutators of p-adic Hardy

type operators. Besides, some further boundedness of p-adic Hardy op-

erators and their commutators is also presented.

1. Introduction

Let f be a locally integrable function on Rn. The well-known n-dimensional
Hardy operator H (see [5]) is defined as

Hf(x) :=
1

|x|n

∫
|y|<|x|

f(y)dy, x ∈ Rn.

The norm of H on Lq(Rn) was evaluated in [4] and was found to be equal to
that of one-dimensional Hardy operator. One can see [10] for more famous
results for the one-dimensional Hardy operators and Hardy inequalities. The
dual operator of H is defined by

H∗f(x) :=

∫
|y|≥|x|

f(y)

|y|n
dy, x ∈ Rn\{0}.

It is clear that H and H∗ satisfy∫
Rn
g(x)Hf(x)dx =

∫
Rn
f(x)H∗g(x)dx

for a suitable function g. The commutators of H and H∗ are defined by

Hbf := b(Hf)−H(bf)

Received June 11, 2018; Accepted October 26, 2018.

2010 Mathematics Subject Classification. Primary 42B20; Secondary 42B35.
Key words and phrases. p-adic central Campanato space, p-adic Hardy operator, commu-

tator.
The work is supported by NSFC (No.11471309, 11271162 and 11561062), Project of Henan

Provincial Department of Education (No.18A110028), the Nanhu Scholar Program for Young
Scholars of XYNU.

c©2019 Korean Mathematical Society

767



768 Q. HE, M. WEI, AND D. YAN

and

H∗b := b(H∗f)−H∗(bf),

respectively. For some known works about the boundedness of Hb and H∗b , see
[16] and [23]. The fact that both H and H∗ are centrosymmetric motivates
one to characterize central function spaces via the boundedness of Hb and H∗b .
In [7], Fu and Liu et al. gave some characterizations of central BMO space
via the boundedness of Hb and H∗b on Lesbesgue space. By different ideas
comparing to that of [7], Zhao and Lu [30] characterized the λ-central BMO
space via the boundedness of Hb and H∗b on Lebesgue space under some suitable
conditions on λ. In 2015, Shi and Lu [22] gave some characterizations of central
Campanato space via the boundedness of Hb and H∗b on the central Morrey
space.

In recent years, p-adic analysis has received a lot of attention due to its
application in Mathematical Physics (cf. [1,2,11,12,25] and [26]), and Harmonic
analysis on p-adic field has been drawing more and more concern (cf. [13, 14,
17,19–21] and references therein).

Now we are in a position to introduce p-adic field. For a prime number p, let
Qp be the field of p-adic numbers. It is defined as the completion of the field
of rational numbers Q with respect to the non-Archimedean p-adic norm | · |p.
This norm is defined as follows: |0|p = 0. If any non-zero rational number x
is represented as x = pγ mn , where m and n are integers which are not divisible
by p, and γ is an integer, then |xp| = p−γ . It is not difficult to show that the
norm satisfies the following properties:

|xy|p = |x|p|y|p, |x+ y|p ≤ max{|x|p, |y|p}.

It follows from the second property that when |x|p 6= |y|p, then |x + y|p =
max{|x|p, |y|p}. From the standard p-adic analysis [25], we see that any non-
zero p-adic number x ∈ Qp can be uniquely represented in the canonical series

(1) x = pγ
∞∑
j=0

ajp
j , γ = γ(x) ∈ Z,

where aj are integers, 0 ≤ aj ≤ p − 1, a0 6= 0. The series (1) converges in the
p-adic norm because |ajpj |p = p−γ .

The space Qnp consists of points x = (x1, x2, . . . , xn), where xj ∈ Qp, j =
1, 2, . . . , n. The p-adic norm on Qnp is

|x|p := max
1≤j≤n

|xj |p, x ∈ Qnp .

Denote by Bγ(a) = {x ∈ Qn : |x − a|p ≤ pγ}, the ball with center at a ∈ Qnp
and radius pγ , and by Sγ(a) := {x ∈ Qnp : |x−a|p = pγ} the sphere with center
at a ∈ Qnp and radius pγ , γ ∈ Z. It is clear that Sγ(a) = Bγ(a)\Bγ−1(a) and

(2) Bγ(a) =
⋃
k≤γ

Sk(a).
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We set Bγ(0) = Bγ and Sγ(0) = Sγ . Set Qn,∗p = Qnp\{0}.
Since Qnp is a locally compact commutative group under addition, it follows

from the standard analysis that there exists a unique Harr measure dx on Qnp
(up to positive constant multiple) which is translation invariant. We normalize
the measure dx so that ∫

B0(0)

dx = |B0(0)|H = 1,

where |E|H denotes the Harr measure of a measurable subset E of Qnp . From
this integral theory, it is easy to obtain that |Bγ(a)|H = pγn and |Sγ(a)|H =
pγn(1− p−n) for any a ∈ Qnp . For a more complete introduction to p-adic field,
see [24] and [26].

Fu, Wu and Lu [8] introduced the p-adic Hardy operator defined by

Hpf(x) :=
1

|x|np

∫
B(0,|x|p)

f(y)dy, x ∈ Qnp\{0},

and Hp,∗, the dual operator of Hp, which is defined as

Hp,∗f(x) :=

∫
Qnp\B(0,|x|p)

1

|y|p
f(y)dy, x ∈ Qnp\{0},

where B(0, |x|p) is a ball in Qnp with center at 0 ∈ Qnp and radius |x|p, and
established the sharp of Hp and Hp,∗ on p-adic weighted Lebesgue spaces. Wu,
Mi and Fu [29] obtained the sharp bounds of Hp on p-adic central Morrey
spaces and p-adic λ-central BMO spaces. They also got the boundedness for
commutators of Qnp on these spaces. The commutators of Hp and Hp,∗ are
defined by

Hpbf := b(Hpf)−Hp(bf)

and
Hp,∗b f := b(Hp,∗f)−Hp,∗(bf),

respectively.
Assume that 1 ≤ q < ∞ and −1/q < λ < 1/n, and then the p-adic central

Campanato space can be defined by

Ċq,λ(Qnp ) = {f : ‖f‖Ċq,λ(Qnp ) <∞},

where

‖f‖Ċq,λ(Qnp ) := sup
γ∈Z

1

|Bγ |λH

(
1

|Bγ |H

∫
Bγ

|f(x)− fBγ |qdx

)1/q

,

here Bγ = Bγ(0). When 0 ≤ λ < 1/n, the space Ċq,λ(Qnp ) is just ˙CMO
q,λ

(Qnp )
(λ-central bounded mean oscillation function space) which was introduced by
Wu and Fu [28] with the equivalent norm

‖f‖ ˙CMO
q,λ

(Qnp )
:= sup

γ∈Z
inf
c∈C

1

|Bγ |λH

(
1

|Bγ |H

∫
Bγ

|f(x)− c|qdx

)1/q

.
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For some information as regards the space ˙CMO
q,λ

(Qnp ), see [3] for example.

If λ = 0, then ˙CMO
q,λ

(Qnp ) = ˙CMO
q
(Qnp ) which is defined in [8]. In [8,27], the

authors obtained the boundedness of Hpb and Hp,∗b on Lebesgue spaces as:

b ∈ ˙CMO
max(q,q′)

(Qnp )⇒ Hpb (H
p,∗
b ) : Lq(Qnp )→ Lq(Qnp ).

For the case −1/q < λ < 0, Ċq,λ(Qnp ) ⊃ Ṁq,λ(Qnp ). Here Ṁq,λ(Qnp ) denote
the central Morrey space with the following norm

‖f‖Ṁq,λ(Qnp )
:= sup

γ∈Z

1

|Bγ |λH

(
1

|Bγ |H

∫
Bγ

|f(x)|qdx

)1/q

.

It is remarkable that the Morrey space on Rn was first introduced in [18] by
Morrey to study the local behavior of solutions of second order elliptic partial
differential equations.

However, for the case −1/q < λ < 0, as a concept of highly independent in-

terest, there has received nearly zero attention for characterization of Ċq,λ(Qnp )
by the boundedness of the commutator operators of Hardy type, to the best
of our knowledge. In the paper, we will focus on this problem and give some
characterizations of Ċq,λ(Qnp ) for λ < 0 via the boundedness of Hpb and Hp,∗b on

Ṁq,λ(Qnp ). As our previous studies, we settle this problem under the assump-
tion that b satisfies the following mean value inequality. A function is said to
satisfy the well known mean value inequality if there exists a constant C > 0
such that for any ball Bγ(a) ∈ Qnp with γ ∈ Z,

(3) sup
Bγ(a)3x

|f(x)− fBγ(a)| ≤
C

|Bγ(a)|H

∫
Bγ(a)

|f(x)− fBγ(a)|dx.

The function class that satisfies (3) is also called the reverse Hölder class which
contain many kinds of functions, such as polynomial functions [6] and harmonic
functions [9]. For more information about the reverse Hölder classes, see also
[15] for example.

We end this section with the outline of this paper. Section 2 is devote to
give some characterizations of p-adic Campanato spaces via the boundedness
of commutators of p-adic Hardy type operator. In Section 3, some interesting
boundedness of p-adic Hardy operator is given. Throughout this paper, for
γ ∈ Z and Bγ = Bγ(0) denotes the ball centered at 0 with radius pγ . C > 0 is
a constant which may change from line to line.

2. Characterizations of p-adic central Campanato spaces via the
boundedness of commutators of p-adic Hardy type operators

In this section, we give some characterizations of p-adic central Campanato
spaces via the boundedness of commutator of p-adic Hardy operator.
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Theorem 2.1. Let 1 < q < ∞, −1/q < λ < 0, −1/qi < λi < 0, i = 1, 2,
1/q = 1/q1 + 1/q2, λ = λ1 + λ2 and let b satisfy (3). Then the following
statements are equivalent:

(a) b ∈ Ċq1,λ1(Qnp );

(b) Both Hpb and H
p,∗
b are bounded operators from Ṁq2,λ2(Qnp ) to Ṁq,λ(Qnp ).

Under some stronger condition on λ, the following result can be deduced if
we drop the assumption that b satisfies the condition (3).

Theorem 2.2. Let 1 < q < ∞, 1/q + 1/q′ = 1 and −min{1/(2q), 1/(2q′)} <
λ < 0. Then the following statements are equivalent:

(a) b ∈ Ċmax(q,q′),λ(Qnp );

(b) Both Hpb and H
p,∗
b are bounded operators from Ṁq,λ(Qnp ) to Ṁq,2λ(Qnp ).

In addition, both Hpb and Hp,∗b are bounded operators from Ṁq′,λ(Qnp ) to

Ṁq′,2λ(Qnp ).

Let f be a locally integrable function in Qnp and 0 < α < n. The n-
dimensional fractional operator can be defined by

Hpαf(x) :=
1

|x|n−αp

∫
B(0,|x|p)

f(y)dy, x ∈ Qnp\{0}.

The dual operator of Hpα is Hp,∗α , which can be defined as

Hp,∗α f(x) :=

∫
Qnp\B(0,|x|p)

f(y)

|x|n−αp
dy, x ∈ Qnp\{0}.

The commutators of Hpα and Hp,∗α are defined by

Hpα,bf := b(Hpαf)−Hpα(bf)

and
Hp,∗α,bf := b(Hp,∗α f)−Hp,∗α (bf),

respectively. In [27], the author obtained the boundedness of Hpα,b and Hp,∗α,b
on both Lebesgue spaces and Herz spaces. In this paper, we give some char-
acterizations of Ċq,λ(Qnp ) with λ < 0 via the boundedness of Hpα,b and Hp,∗α,b on

Ṁq,λ(Qnp ).

Theorem 2.3. Let q, λ, qi, λi, i = 1, 2 and b be as in Theorem 2.1, 0 <
α < min{n(1 − 1/q), n(λ2 + 1/q2)} and let β = λ2 − α/n. The the following
statements are equivalent:

(a) b ∈ Ċq1,λ1(Qnp );

(b) Both Hpα,b and H
p,∗
α,b are bounded operators from Ṁq2,β(Qnp ) to Ṁq,λ(Qnp ).

Theorem 2.4. Let 1 < q <∞, 1/q+1/q′ = 1, max(q, q′) = q̄, −1/2q̄ < λ < 0,
0 < α < min{n(1 − 1/q̄), n(λ + 1/q̄)} and let β = λ − α/n. The the following
statements are equivalent:

(a) b ∈ Ċmax(q,q′),λ(Qnp );



772 Q. HE, M. WEI, AND D. YAN

(b) Both Hpα,b and H
p,∗
α,b are bounded operators from Ṁq,λ(Qnp ) to Ṁq,2λ(Qnp ).

In addition, both Hpα,b and Hp,∗α,b are bounded operators from Ṁq′,λ(Qnp ) to

Ṁq′,2λ(Qnp ).

Proof of Theorem 2.1. This process can be divided into two steps.
(a) ⇒ (b) Given a fixed ball Bγ ∈ Qnp , the task is now to show that there

exists a constant C > 0 such that

(4)
1

|Bγ |λH

(
1

|Bγ |H

∫
Bγ

|Hpbf(x)|qdx

)1/q

≤ C‖f‖Ṁq2,λ2 (Qnp )

and

(5)
1

|Bγ |λH

(
1

|Bγ |H

∫
Bγ

|Hp,∗b f(x)|qdx

)1/q

≤ C‖f‖Ṁq2,λ2 (Qnp )
.

The definition of Hpb gives∫
Bγ

|Hpbf(x)|qdx =

∫
Bγ

∣∣∣∣∣ 1

|x|np

∫
B(0,|x|p)

(b(x)− b(y)f(y)dy

∣∣∣∣∣
q

dx

≤
γ∑

k=−∞

∫
Sk

∣∣∣∣ 1

|x|np

∫
Bk

(b(x)− b(y))f(y)dy

∣∣∣∣q dx
≤ C

γ∑
k=−∞

∫
Sk

∣∣∣∣∣ 1

|x|np

k∑
i=−∞

∫
Si

|b(x)− bBk ||f(y)|dy

∣∣∣∣∣
q

dx

+ C

γ∑
k=−∞

∫
Sk

∣∣∣∣∣ 1

|x|np

k∑
i=−∞

∫
Si

|b(y)− bBk ||f(y)|dy

∣∣∣∣∣
q

dx

=: I + II.

Applying Hölder’s inequality (see [15]) to q1/q and (q1/q)
′, the term I can be

estimated as

I ≤ C
γ∑

k=−∞

p−knq
∫
Sk

|b(x)− bBk |qdx

∣∣∣∣∣
k∑

i=−∞

∫
Si

|f(y)|dy

∣∣∣∣∣
q

≤ C
γ∑

k=−∞

p−knq
(∫

Sk

|b(x)− bBk |q1dx
)q/q1

|Bk|1/(q1/q)
′

H

×

∣∣∣∣∣
k∑

i=−∞

(∫
Bi

|f(y)|q2dy
)1/q2

|Bi|
1/q′2
H

∣∣∣∣∣
q

≤ C‖b‖qĊq1,λ1 (Qnp )‖f‖
q

Ṁq2,λ2 (Qnp )

γ∑
k=−∞

p−knq|Bk|1+qλ1

H

∣∣∣∣∣
k∑

i=−∞
|Bi|1+λ2

H

∣∣∣∣∣
q
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≤ C‖b‖qĊq1,λ1 (Qnp )‖f‖
q

Ṁq2,λ2 (Qnp )

γ∑
k=−∞

pkn(1+qλ)

≤ C‖b‖qĊq1,λ1 (Qnp )‖f‖
q

Ṁq2,λ2 (Qnp )
|Bγ |1+qλH .

The fact 1/q = 1/q1 + 1/q2 allows us to estimate the term II as

II ≤ C
γ∑

k=−∞

p−knq
∫
Sk

∣∣∣∣∣
k∑

i=−∞

∫
Si

|b(y)− bBk ||f(y)|dy

∣∣∣∣∣
q

dx

≤ C
γ∑

k=−∞

p−knq
∫
Sk

∣∣∣∣∣
k∑

i=−∞

(∫
Bi

(|b(y)− bBk ||f(y)|)qdy
)1/q

|Bi|1/q
′

H

∣∣∣∣∣
q

dx

≤ C
γ∑

k=−∞

p−knq
∫
Sk

∣∣∣∣∣
k∑

i=−∞

(∫
Bi

|b(y)− bBk |q1dy
)1/q1

(∫
Bi

|f(y)|q2dy
)1/q2

|Bi|1/q
′

H

∣∣∣∣∣
q

dx

≤ C‖b‖qĊq1,λ1 (Qnp )‖f‖
q

Ṁq2,λ2 (Qnp )

γ∑
k=−∞

pkn(1+qλ)

≤ C‖b‖qĊq1,λ1 (Qnp )‖f‖
q

Ṁq2,λ2 (Qnp )
|Bγ |1+qλH .

On account of the above estimate for I and II, (4) is obtained.
We are now in a position to (5). We note that∫

Bγ

|Hp,∗b |
pdx =

∫
Bγ

∣∣∣∣∣
∫
Qnp\B(0,|x|p)

b(x)− b(y)

|y|np
f(y)dy

∣∣∣∣∣
q

dx

≤
∫
Bγ

∣∣∣∣∣
∫
|x|p≤|y|p≤pnγ

b(x)− b(y)

|y|np
f(y)dy

∣∣∣∣∣
q

dx

+

∫
Bγ

∣∣∣∣∣
∫
|y|p>pnγ

b(x)− b(y)

|y|np
f(y)dy

∣∣∣∣∣
q

dx

=: I ′ + II ′.

The term I ′ can be handled in a similar way as that of (4), the only difference
being in the analysis of the term II ′. Analysis of Hpb shows

I ′ ≤
∫
Bγ

∣∣∣∣∣ 1

|x|np

∫
|y|p≤pnγ

|b(x)− b(y)||f(y)|dy

∣∣∣∣∣
q

dx

≤ C
γ∑

k=−∞

p−knq
∫
Bk

∣∣∣∣∣
k∑

i=−∞

∫
Bi

|b(x)− b(y)||f(y)|dy

∣∣∣∣∣
q

dx
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≤ C‖b‖qĊq1,λ1 (Qnp )‖f‖
q

Ṁq2,λ2 (Qnp )
|Bγ |1+qλH .

For the term II ′, we proceed to show that

II ′ ≤
∫
Bγ

∣∣∣∣∣∣
∞∑
k=γ

∫
Sk

|b(x)− bBγ |
|y|np

|f(y)|dy

∣∣∣∣∣∣
q

dx

+

∫
Bγ

∣∣∣∣∣∣
∞∑
k=γ

∫
Sk

|b(y)− bBγ |
|y|np

|f(y)|dy

∣∣∣∣∣∣
q

dx

=: II ′1 + II ′2.

By the Hölder’s inequality, we have

II ′1 ≤
∫
Bγ

|b(x)− bγ |qdx

∣∣∣∣∣∣
∞∑
k=γ

∫
Sk

|f(y)|
|y|np

dy

∣∣∣∣∣∣
q

≤
(∫

Bγ

|b(x)− bBγ |q1dx

)q/q1
|Bγ |1/(q1/q)

′

H

∣∣∣∣∣∣
∞∑
k=γ

(∫
Sk

∣∣∣∣ |f(y)|
|y|np

∣∣∣∣q2)1/q2

|Bk|
1/q′2
H

∣∣∣∣∣∣
q

≤ C‖b‖qĊq1,λ1 (Qnp )‖f‖
q

Ṁq2,λ2 (Qnp )
|Bγ |1+qλ1

H

∣∣∣∣∣∣
∞∑
k=γ

|Bk|λ2

H

∣∣∣∣∣∣
q

≤ C‖b‖qĊq1,λ1 (Qnp )‖f‖
q

Ṁq2,λ2 (Qnp )
|Bγ |1+qλH .

To get the boundedness for the term II ′2, we need the following decomposition

II ′2 ≤
∫
Bγ

∣∣∣∣∣∣
∞∑
k=γ

∫
Sk

|b(y)− bBk ||f(y)|
|y|np

∣∣∣∣∣∣ dx+

∫
Bγ

∣∣∣∣∣∣
∞∑
k=γ

∫
Sk

|bBγ − bBk ||f(y)|
|y|np

∣∣∣∣∣∣ dx
=: II ′21 + II ′22.

We first compute II ′21. To do this, the Hölder’s inequality and 1/q = 1/q1+1/q2
show that

II ′21 ≤
∫
Bγ

∣∣∣∣∣∣
∞∑
k=γ

(∫
Sk

∣∣∣∣ |b(y)− bBk |
|y|np

|f(y)|
∣∣∣∣q dy)1/q

|Bk|1/q
′

H

∣∣∣∣∣∣
q

dx

≤
∫
Bγ

∣∣∣∣∣∣
∞∑
k=γ

|Bk|1/q
′

H

(∫
Bk

|b(y)− bBk |q1dy
)1/q1 (∫

Bk

∣∣∣∣ |f(y)|
|y|np

∣∣∣∣q2 dy)1/q2

∣∣∣∣∣∣
q

dx

≤ C‖b‖qĊq1,λ1 (Qnp )‖f‖
q

Ṁq2,λ2 (Qnp )

∫
Bγ

∣∣∣∣∣∣
∞∑
k=γ

|Bk|λH

∣∣∣∣∣∣
q

dx

≤ C‖b‖qĊq1,λ1 (Qnp )‖f‖
q

Ṁq2,λ2 (Qnp )
|Bγ |1+qλH .
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For the term II ′22, we claim first that for k > γ

|bBγ − bBk | ≤ Cp(γ+1)nλ1‖b‖Ċq1,λ1 (Qnp ).

In fact,

|bBγ − bBk | ≤
k−1∑
j=γ

|bBj − bBj+1 | ≤
k−1∑
j=γ

1

|Bj |H

∫
Bj+1

|b(y)− bBj+1 |dy

≤
k−1∑
j=γ

1

|Bj |H

(∫
Bj+1

|b(y)− bBj+1 |q1dy

)1/q1

|Bj+1|
1/q′1
H

≤ C‖b‖Ċq1,λ1 (Qnp )
k−1∑
j=γ

|Bj+1|1+λ1

H

|Bj |H
≤ C‖b‖Ċq1,λ1 (Qnp )

k−1∑
j=γ

p(j+1)nλ1

≤ Cp(γ+1)nλ1‖b‖Ċq1,λ1 (Qnp ).

Therefore,

II ′22 ≤ C‖b‖
q

Ċq1,λ1 (Qnp )

∫
Bγ

∣∣∣∣∣∣
∞∑
k=γ

∫
Sk

pγnλ1

|y|np
|f(y)|dy

∣∣∣∣∣∣
q

dx

≤ C‖b‖qĊq1,λ1 (Qnp )

∫
Bγ

pγnλ1q

∣∣∣∣∣∣
∞∑
k=γ

1

pnk

(∫
Sk

|f(y)|q2dy
)1/q2

|Bk|
1/q′2
H

∣∣∣∣∣∣
q

dx

≤ C‖b‖qĊq1,λ1 (Qnp )‖f‖
q

Ṁq2,λ2 (Qnp )

∫
Bγ

pγnλ1q

∣∣∣∣∣∣
∞∑
k=γ

|Bk|λ2

H

∣∣∣∣∣∣
q

dx

≤ C‖b‖qĊq1,λ1 (Qnp )‖f‖
q

Ṁq2,λ2 (Qnp )
|Bγ |1+qλH .

Summarizing, we have

II ′ ≤ C‖b‖qĊq1,λ1 (Qnp )‖f‖
q

Ṁq2,λ2 (Qnp )
|Bγ |1+qλH .

Which implies (5). This is the desired result.
(b) ⇒ (a) In this case, the proof consists of constructions of a proper com-

mutator. We are reduced to proving that for a fixed ball Bγ ,

1

|Bγ |1+q1λ1

H

∫
Bγ

|b(y)− bBγ |q1dy ≤ C.

We conclude from (3) and Hölder’s inequality that

1

|Bγ |1+q1λ1

H

∫
Bγ

|b(y)− bBγ |q1dy ≤
1

|Bγ |q1λ1

H

sup
y∈Bγ

|b(y)− bBγ |q1

≤ C

|Bγ |q1λ1

H

(
1

|Bγ |H

∫
Bγ

|b(y)− bBγ |dy

)q1
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≤ C

|Bγ |q1λ1

H

(
1

|Bγ |H

∫
Bγ

|b(y)− bBγ |qdy

)q1/q
.

To deal with the above term, we note that∫
Bγ

|b(y)− bBγ |qdy

≤ 1

|Bγ |qH

∫
Bγ

∣∣∣∣∣
∫
Bγ

(b(y)− b(z)dz

∣∣∣∣∣
q

dy

≤ 1

|Bγ |qH

∫
Bγ

|y|nqp

∣∣∣∣∣ 1

|y|np

∫
{z∈Bγ :|z|p<|y|p}

(b(y)− b(z))χBγ (z)dz

∣∣∣∣∣
q

dy

+
1

|Bγ |qH

∫
Bγ

∣∣∣∣∣
∫
{z∈Bγ :|z|p≥|y|p}

(b(y)− b(z))χBγ (z)dz

∣∣∣∣∣
q

dy

=: J + JJ.

The
(
Ṁq2,λ2(Qnp ),Ṁq,λ(Qnp )

)
boundedness of Hpb allows us to estimate J as

J ≤ 1

|Bγ |qH

∫
Bγ

|y|nqp |H
p
bχBγ (·)|qdy

≤ |Bγ |1+qλH ‖HpbχBγ (·)‖qṀq,λ(Qnp )

≤ C|Bγ |1+qλH ‖χBγ (·)‖qṀq2,λ2 (Qnp )

≤ C|Bγ |1+qλ1

H .

By the
(
Ṁq2,λ2(Qnp ),Ṁq,λ(Qnp )

)
boundedness of Hp,∗b , it is easy to check that

JJ ≤ 1

|Bγ |qH

∫
Bγ

∣∣∣∣∣
∫
{z∈Bγ :|z|p≥|y|p}

|z|np
(b(y)− b(z))
|z|np

χBγ (z)dz

∣∣∣∣∣
q

dy

≤ C
∫
Bγ

|Hp,∗b χBγ (·)|qdy ≤ C|Bγ |1+qλ‖Hp,∗b χBγ (·)‖qṀq,λ(Qnp )

≤ C|Bγ |1+qλH ‖χBγ (·)‖qṀq2,λ2 (Qnp )

≤ C|Bγ |1+qλ1

H .

We thus have established the following inequality if we combine the above
estimates for J and JJ ,

1

|Bγ |1+q1λ1

H

∫
Bγ

|b(y)− bBγ |q1dy ≤
C

|Bγ |q1λ1

H

(
|Bγ |1+qλ1

H

|Bγ |H

)q1/q
≤ C.

The proof of Theorem 2.1 is completed. �



CHARACTERIZATIONS OF p-ADIC CENTRAL CAMPANATO SPACE 777

Proof of Theorem 2.2. We begin the proof of Theorem 2.2 by proving the fol-
lowing lemma.

Lemma 2.5. Let 1 < q <∞, −1/q < λ < 0, i, k ∈ Z and b ∈ Ċq,λ(Qnp ). Then

|b(y)− bBk | ≤ |by − bBi |+ C max{|Bk|λH , |Bi|λH}‖b‖Ċq,λ(Qnp ).

Proof. Using the Hölder’s inequality to q and q′, one has

|bBj − bBj+1 | ≤
1

|Bj |H

∫
Bj+1

|b(y)− bBj+1 |dy

≤

(
1

|Bj |H

∫
Bj+1

|b(y)− bBj+1 |qdy

)1/q

≤ C|Bj+1|λH‖b‖Ċq,λ(Qnp ).

The proof falls naturally into two cases. In the case k < i, we note that

|b(y)− bBk | ≤ |b(y)− bBi |+
i−1∑
j=k

|bBj − bBj+1
|

≤ |b(y)− bBi |+ C

i−1∑
j=k

|Bj+1|λH‖b‖Ċq,λ(Qnp )

≤ |b(y)− bBi |+ C|Bk|λH‖b‖Ċq,λ(Qnp ).

For the case k > i, it is easy to obtain

|b(y)− bBk | ≤ |b(y)− bBi |+
k−1∑
j=i

|bBj − bBj+1 |

≤ |b(y)− bBi |+ C

k−1∑
j=i

|Bj+1|λH‖b‖Ċq,λ(Qnp )

≤ |b(y)− bBi |+ C|Bi|λH‖b‖Ċq,λ(Qnp ). �

Having disposed of this preliminary step, we can now return to the proof of
Theorem 2.2.

(a) ⇒ (b) The task is now to find a constant C > 0 such that for a fixed
ball Bγ , the following inequalities are true

(6)
1

|Bγ |2λH

(
1

|Bγ |H

∫
Bγ

|Hpbf(x)|qdx

)1/q

≤ C‖f‖Ṁq,λ(Qnp )

and

(7)
1

|Bγ |2λH

(
1

|Bγ |H

∫
Bγ

|Hp,∗b f(x)|qdx

)1/q

≤ C‖f‖Ṁq,λ(Qnp )
.
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To deal with (6), we note that∫
Bγ

|Hpbf(x)|qdx ≤
∫
Bγ

∣∣∣∣∣ 1

|x|np

∫
B(0,|x|p)

|b(x)− b(y)||f(y)|dy

∣∣∣∣∣
q

dx

≤ C
γ∑

k=−∞

1

|Bk|qH

∫
Bk

∣∣∣∣∣
k∑

i=−∞

∫
Bi

|b(x)− bBk ||f(y)|dy

∣∣∣∣∣
q

dx

+ C

γ∑
k=−∞

1

|Bk|qH

∫
Bk

∣∣∣∣∣
k∑

i=−∞

∫
Bi

|b(y)− bBk ||f(y)|dy

∣∣∣∣∣
q

dx

=: K +KK.

Using Hölder’s inequality to q1/q and (q1/q)
′, the following boundedness for K

can be shown:

K ≤ C
γ∑

k=−∞

1

|Bk|qH

∫
Bk

|b(x)− bBk |qdx

∣∣∣∣∣
k∑

i=−∞

∫
Bi

|f(y)|dy

∣∣∣∣∣
q

≤ C‖b‖qĊq,λ(Qnp )

γ∑
k=−∞

|Bk|1+qλ−qH

∣∣∣∣∣
k∑

i=−∞

(∫
Bi

|f(y)|qdy
)1/q

|Bi|1/q
′

H

∣∣∣∣∣
q

≤ C‖b‖qĊq,λ(Qnp )‖f‖
q

Ṁq,λ(Qnp )

γ∑
k=−∞

|Bk|1+qλ−qH

∣∣∣∣∣
k∑

i=−∞
|Bi|1+λH

∣∣∣∣∣
q

≤ C‖b‖qĊq,λ(Qnp )‖f‖
q

Ṁq,λ(Qnp )

γ∑
k=−∞

pkn(1+2qλ)

≤ C‖b‖qĊq,λ(Qnp )‖f‖
q

Ṁq,λ(Qnp )
|Bγ |1+2qλ

H ,

where the fact λ > −1/(2q) has been used in the last inequality. Applying
Lemma 2.5 to term KK can produce

KK ≤ C
γ∑

k=−∞

1

|Bk|qH

∫
Bk

∣∣∣∣∣
k∑

i=−∞

∫
Bi

|b(y)− bBi ||f(y)|dy

∣∣∣∣∣
q

dx

+ C‖b‖qĊq,λ(Qnp )

γ∑
k=−∞

1

|Bk|qH

∫
Bk

∣∣∣∣∣
k∑

i=−∞

∫
Bi

|Bi|λH |f(y)|dy

∣∣∣∣∣
q

dx

=: KK1 +KK2.

Repeated application of Hölder’s inequality shows that

KK1 ≤ C

γ∑
k=−∞

1

|Bk|qH

∫
Bk

∣∣∣∣∣
k∑

i=−∞

(∫
Bi

|b(y)− bBi |q
′
dy

)1/q′ (∫
Bi

|f(y)|qdy
)1/q

∣∣∣∣∣
q

dx
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≤ C‖b‖qĊq′,λ(Qnp )‖f‖
q

Ṁq,λ(Qnp )

γ∑
k=−∞

1

|Bk|qH

∫
Bk

∣∣∣∣∣
k∑

i=−∞
|Bi|1+2λ

H

∣∣∣∣∣
q

dx

≤ C‖b‖qĊq′,λ(Qnp )‖f‖
q

Ṁq,λ(Qnp )

γ∑
k=−∞

1

|Bk|qH

∫
Bk

|Bk|(1+2λ)q
H dx

≤ C‖b‖qĊq′,λ(Qnp )‖f‖
q

Ṁq,λ(Qnp )
|Bγ |1+2qλ

H .

The term KK2 can be bounded by

KK2 = C‖b‖qĊq,λ(Qnp )

γ∑
k=−∞

1

|Bk|qH

∫
Bk

∣∣∣∣∣
k∑

i=−∞

∫
Bi

|Bi|λH |f(y)|dy

∣∣∣∣∣
q

dx

≤ C‖b‖qĊq,λ(Qnp )

γ∑
k=−∞

1

|Bk|qH

∫
Bk

∣∣∣∣∣
k∑

i=−∞
|Bi|1/q

′+λ
H

(∫
Bi

|f(y)|qdy
)1/q

∣∣∣∣∣
q

dx

≤ C‖b‖qĊq,λ(Qnp )‖f‖
q

Ṁq,λ(Qnp )

γ∑
k=−∞

1

|Bk|qH

∫
Bk

∣∣∣∣∣∣
k∑

i=−infty

|Bi|1+2λ
H

∣∣∣∣∣∣
q

dx

≤ C‖b‖qĊq,λ(Qnp )‖f‖
q

Ṁq,λ(Qnp )

γ∑
k=−∞

|Bk|1+2qλ
H

≤ C‖b‖qĊq,λ(Qnp )‖f‖
q

Ṁq,λ(Qnp )
|Bγ |1+2qλ

H .

Summarizing, we have

KK ≤ C‖b‖qĊq′,λ(Qnp )‖f‖
q

Ṁq,λ(Qnp )
|Bγ |1+2qλ

H +C‖b‖qĊq,λ(Qnp )‖f‖
q

Ṁq,λ(Qnp )
|Bγ |1+2qλ

H

≤ C‖b‖qĊmax(q,q′),λ(Qnp )
‖f‖qṀq,λ(Qnp )

|Bγ |1+2qλ
H .

Based on the above estimates for K and KK, we obtain (6).
With a slight modification of the proofs for (5) and (6), (7) can be obtained

easily, we omit its proof here for the similarity.
(b)⇒ (a) This step will be divided into two cases.
Case 1: q > q′. In this case, we want to show that there is a constant C > 0

such that for a fixed ball Bγ , there holds

(8)
1

|Bγ |1+qλH

∫
Bγ

|b(y)− bBγ |qdy ≤ C.

To reach this inequality, we note that

1

|Bγ |1+qλH

∫
Bγ

|b(y)− bBγ |qdy

≤ 1

|Bγ |1+q+qλH

∫
Bγ

∣∣∣∣∣
∫
B(0,|y|p)

(b(y)− b(z))χBγ (z)dz

∣∣∣∣∣
q

dy
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+
1

|Bγ |1+q+qλH

∫
Bγ

∣∣∣∣∣
∫
Qnp\B(0,|y|p)

(b(y)− b(z))χBγ (z)dz

∣∣∣∣∣
q

dy

=: L+ LL.

The rest of the proof runs as that of Theorem 2.1, so we apply that argument

again. The
(
Ṁq,λ(Qnp ),Ṁq,2λ(Qnp )

)
boundedness ofHpb produces the following

estimate for the term L,

L ≤ C

|Bγ |1++q+qλ
H

∫
Bγ

|y|nqp |H
p
bχBγ (·)|qdy

≤ C|Bγ |qλH ‖H
p
bχBγ (·)‖qṀq,2λ(Qnp )

≤ C|Bγ |qλH ‖χBγ (·)‖qṀq,λ(Qnp )
≤ C.

Applying the similar argument to term LL, the following can be confirmed
easily

LL ≤ 1

|Bγ |1+q+qλH

∫
Bγ

∣∣∣∣∣
∫
Qnp\B(0,|y|p)

|z|np
(b(y)− b(z))
|z|np

χBγ (z)dz

∣∣∣∣∣
q

dy

≤ C

|Bγ |1+qλH

∫
Bγ

|Hp,∗b χBγ (·)|qdy

≤ C|Bγ |qλH ‖H
p,∗
b χBγ (·)‖qṀq,2λ(Qnp )

≤ C|Bγ |qλH ‖χBγ (·)‖qṀq,λ(Qnp )
≤ C.

So (8) is a by-product of the estimates for L and LL.

Case 2: q < q′. With the
(
Ṁq′,λ(Qnp ),Ṁq′,2λ(Qnp )

)
boundedness of Hpb and

Hp,∗b , the similar arguments of Case 1 can be applied to this and show that

1

|Bγ |1+q
′λ

H

∫
Bγ

|b(y)− bBγ |q
′
≤ C,

which completes the proof Theorem 2.2. �

Proofs of Theorem 2.3 and Theorem 2.4. The methods used in the proofs of
Theorem 2.1 and Theorem 2.2 remain valid for that of Theorem 2.3 and The-
orem 2.4 with only a slight modification. We omit their proofs here for their
similarity. �

3. Further boundedness for Hardy type operators and their
commutators on p-adic central Morrey spaces

In this section, some further boundedness for p-adic Hardy type operators
and their commutators on central Morrey spaces will be given. Now we formu-
late our main results as follows:
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Theorem 3.1. Let 1 < p <∞, −min(1/q, 1/q′) < λ < 0 and let 1/q+ 1/q′ =
1. Then

(a) Both Hp and Hp,∗ are bounded operators from Ṁq,λ(Qnp ) to Ṁq,λ(Qnp ).

(b) Both Hp and Hp,∗ are bounded operators from Ṁq′,λ(Qnp ) to Ṁq′,λ(Qnp ).

Theorem 3.2. Let 1 < r ≤ q < ∞, 1/r + 1/r′ = 1, 1/q + 1/q′ = 1,
−min(1/q, 1/r′) < λ < 0, 1/r − 1/q = α/n, 0 < α < min{n(λ + 1/r), n(λ +
1/q′)} and let β = λ− α/n. Then the following statements are equivalent:

(a) b ∈ ˙CMO
max(q,r′)

(Qnp );

(b) Both Hpα,b and H
p,∗
α,b are bounded operators from Ṁr,β(Qnp ) to Ṁq,λ(Qnp ).

In addition, both Hpα,b and H
p,∗
α,b are also bounded operators from Ṁq′,β(Qnp )

to Ṁr′,λ(Qnp ).

When r = q in Theorem 3.2, we have the following result.

Corollary 3.3. Let 1 < q <∞, 1/q + 1/q′ = 1 and −min(1/q, 1/q′) < λ < 0.
Then the following statements are equivalent:

(a) b ∈ ˙CMO
max{q,q′}

(Qnp );

(b) Both Hpb and Hp,∗b are bounded operators from Ṁq,λ(Qnp ) to Ṁq,λ(Qnp ).

In addition, both Hpb and Hp,∗b are bounded operators from Ṁq′,λ(Qnp ) to

Ṁq′,λ(Qnp ).

The proofs of Theorem 3.1 and Theorem 3.2 based on following lemma.

Lemma 3.4 (See [8]). Let 1 < q <∞ and 1/q + 1/q′ = 1. Then
(a) Both Hp and Hp,∗ are bounded operators from Lq(Qnp ) to Lq(Qnp );

(b) Both Hp and Hp,∗ are bounded operators from Lq
′
(Qnp ) to Lq

′
(Qnp );

Lemma 3.5 (See [28]). Let 1 < q < ∞, 0 ≤ λ < 1/n, i, k ∈ Z, and assume

that b ∈ ˙CMO
q,λ

(Qnp ).
(a) If λ > 0, then

|by − bBk | ≤ |b(y)− bBi |+
pn(1 + p−|k−i|nλ)

1− p−nλ
‖b‖ ˙CMO

q,λ
(Qnp )

max{|Bi|λH , |Bk|λH}.

(b) If λ = 0, then

|by − bBk | ≤ |b(y)− bBi |+ pn|i− k|‖b‖ ˙CMO
q,λ

(Qnp )
max{|Bi|λH , |Bk|λH}.

Lemma 3.6 (See [27]). Let 0 < α < n, 1 < r ≤ q < ∞, 1/r + 1/r′ = 1,

1/q + 1/q′ = 1, 1/r − 1/q = α/n, and let b ∈ ˙CMO
max{q,r′}

(Qnp ). Then there
exist constants C > 0 such that

(a) ‖Hpα,bf‖Lq(Qnp ) ≤ C‖f‖Lr(Qnp );
(b) ‖Hp,∗α,bf‖Lq(Qnp ) ≤ C‖f‖Lr(Qnp ).

Furthermore, by duality, we can deduce that exist constants C > 0 such that
(c) ‖Hpα,bf‖Lr′ (Qnp ) ≤ C‖f‖Lq′ (Qnp );
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(d) ‖Hp,∗α,bf‖Lr′ (Qnp ) ≤ C‖f‖Lq′ (Qnp ).

Proof of Theorem 3.1. Following the notations of Section 2, we need to show
that for fixed ball Bγ with γ ∈ Z, there exist constants C > 0 such that

(9)
1

|Bγ |1+qλH

∫
Bγ

|Hpf(x)|qdx ≤ C‖f‖qṀq,λ(Qnp )
;

(10)
1

|Bγ |1+qλH

∫
Bγ

|Hp,∗f(x)|qdx ≤ C‖f‖qṀq,λ(Qnp )
;

(11)
1

|Bγ |1+qλH

∫
Bγ

|Hpf(x)|q
′
dx ≤ C‖f‖q

′

Ṁq,λ(Qnp )
;

and

(12)
1

|Bγ |1+qλH

∫
Bγ

|Hp,∗f(x)|q
′
dx ≤ C‖f‖q

′

Ṁq,λ(Qnp )
.

Let f = fχB2γ
+ fχBc2γ

=: f1 + f2 to produce

1

|Bγ |1+qλH

∫
Bγ

|Hpf(x)|qdx

≤ 1

|Bγ |1+qλH

∫
Bγ

|Hpf1(x)|qdx+
1

|Bγ |1+qλH

∫
Bγ

|Hpf2(x)|qdx

=: L1 + L2.

By Lemma 3.4 the following estimate for L1 can be proven

L1 ≤
C

|Bγ |1+qλH

∫
B2γ

|f(x)|qdx ≤ C‖f‖qṀq,λ(Qnp )
.

Next, the boundedness of L2 can be shown. Since

|Hpf2(x)| =

∣∣∣∣∣ 1

|x|np

∫
B(0,|x|p)

f2(y)dy

∣∣∣∣∣
≤

∞∑
k=2γ

1

|x|np

∫
Sk

|f(y)|dy

≤
∞∑

k=2γ

1

|Bk|H

(∫
Bk

|f(y)|qdy
)1/q

|Bk|1/q
′

H

≤ C‖f‖qṀq,λ(Qnp )

∞∑
k=2γ

|Bk|λH

≤ C‖f‖qṀq,λ(Qnp )
|Bγ |λH ,
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therefore,

L2 ≤ C‖f‖qṀq,λ(Qnp )
1

|Bγ |1+qλH

∫
Bγ

|Bγ |qλH dx ≤ C‖f‖
q

Ṁq,λ(Qnp )
,

which yield (9). (10), (11) and (12) follow by same methods as that of (9). �

Proof of Theorem 3.2. (a) ⇒ (b) In this case, the task is to show for a fixed
ball Bγ with γ ∈ Z, there exist constants C > 0 such that

(13)
1

|Bγ |1+qλH

∫
Bγ

|Hpα,bf(x)|qdx ≤ C‖f‖qṀr,λ(Qnp )
;

(14)
1

|Bγ |1+qλH

∫
Bγ

|Hp,∗α,bf(x)|qdx ≤ C‖f‖qṀr,λ(Qnp )
;

(15)
1

|Bγ |1+r
′λ

H

∫
Bγ

|Hpα,bf(x)|r
′
dx ≤ C‖f‖r

′

Ṁq′,λ(Qnp )
;

and

(16)
1

|Bγ |1+r
′λ

H

∫
Bγ

|Hp,∗α,bf(x)|r
′
dx ≤ C‖f‖r

′

Ṁq′,λ(Qnp )
.

Decomposing f = fχB2γ
+ fχBc2γ

=: f1 + f2 derives that

1

|Bγ |1+qλH

∫
Bγ

|Hpα,bf(x)|qdx

≤ 1

|Bγ |1+qλH

∫
Bγ

|Hpα,bf1(x)|qdx+
1

|Bγ |1+qλH

∫
Bγ

|Hpα,bf2(x)|qdx

=: LL1 + LL2.

We conclude from Lemma 3.6 that

LL1 ≤
1

|Bγ |1+qλH

‖Hpα,bfχB2γ
‖qLq(Qnp )

≤ C

|Bγ |1+qλH

‖fχB2γ
‖qLr(Qnp )

≤ C‖f‖qṀr,β(Qnp )
.

For the term LL2, by the definition of Hpα,bf and ˙CMO
q
(Qnp ), the following

can be shown

LL2 ≤
1

|Bγ |1+qλH

∫
Bγ

∣∣∣∣∣ 1

|x|n−αp

∫
B(0,|x|p)

(b(x)− b(y))f2(y)dy

∣∣∣∣∣
q

dx

≤ 1

|Bγ |1+qλH

∫
Bγ

∣∣∣∣∣∣
∞∑

k=2γ

1

|Bk|1−α/nH

∫
Bk

(b(x)− c)f(y)dy

∣∣∣∣∣∣
q

dx
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+
1

|Bγ |1+qλH

∫
Bγ

∣∣∣∣∣∣
∞∑

k=2γ

1

|Bk|1−α/nH

∫
Bk

(b(y)− c)f(y)dy

∣∣∣∣∣∣
q

dx

=: LL21 + LL22.

Applying Hölder inequality to q and q′ can produce the estimate for LL21 as

LL21 ≤
1

|Bγ |1+qλH

∫
Bγ

∣∣∣∣∣∣
∞∑

k=2γ

(b(x)− c)|Bk|α/n−1/rH

(∫
Bk

|f(y)|rdy
)1/r

∣∣∣∣∣∣
q

dx

≤ C‖f‖qṀr,β(Qnp )
1

|Bγ |1+qλH

∫
Bγ

|b(x)− c|q
∣∣∣∣∣∣
∞∑

k=2γ

|Bk|λH

∣∣∣∣∣∣
q

dx

≤ C‖b‖q ˙CMO
q
(Qnp )
‖f‖qṀr,β(Qnp )

.

The same conclusion can be drawn for the term LL22 as

LL22 ≤
1

|Bγ |1+qλH

∫
Bγ

∣∣∣∣∣∣
∞∑

k=2γ

1

|Bk|1−α/nH

(∫
Bk

|b(y)− c|r
′
dy

)1/r′ (∫
Bk

|f(y)|rdy
)1/r

∣∣∣∣∣∣
q

dx

≤ C‖b‖q
˙CMO

r′
(Qnp )
‖f‖qṀr,β(Qnp )

1

|Bγ |1+qλH

∫
Bγ

∣∣∣∣∣∣
∞∑

k=2γ

|BK |λH

∣∣∣∣∣∣
q

dx

≤ C‖b‖q
˙CMO

r′
(Qnp )
‖f‖qṀr,β(Qnp )

1

|Bγ |qλH

∣∣∣∣∣∣
∞∑

k=2γ

|Bk|λH

∣∣∣∣∣∣
q

≤ C‖b‖q
˙CMO

r′
(Qnp )
‖f‖qṀr,β(Qnp )

.

Combining the above estimates for LL21 and LL22, (13) is proved. In the same
manner, we can show (14). (15) and (16) can be handled in much the same
way as that of (13) and (14), and we only need to substitute Lemma 3.6(a) and
(b) into Lemma 3.6(c) and (d). This produces the desired results.

(b)⇒ (a) This step will be divided into two cases.
Case 1: q > r′. In this case, we want to show that there is a constant C > 0

such that for a fixed ball Bγ with γ ∈ Z, there holds

(17)
1

|Bγ |H

∫
Bγ

|b(y)− bBγ |qdy ≤ C.

To reach this inequality, we note that

1

|Bγ |H

∫
Bγ

|b(y)− bBγ |qdy

≤ 1

|Bγ |1+qH

∫
Bγ

∣∣∣∣∣
∫
B(0,|x|p)

(b(y)− b(z))χBγ (z)dz

∣∣∣∣∣
q

dy
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+
1

|Bγ |1+qH

∫
Bγ

∣∣∣∣∣
∫
Qnp\B(0,|x|p)

(b(y)− b(z))χBγ (z)dz

∣∣∣∣∣
q

dy

=: K1 +K2.

By the
(
Ṁr,β(Qnp ),Ṁq,λ(Qnp )

)
boundedness of Hpα,b, the following can be

shown

K1 ≤
C

|Bγ |1+qH

∫
Bγ

|y|nq−qαp |Hpα,bχBγ (·)|qdy

≤ C|Bγ |q(λ−α/n)H ‖Hpα,bχBγ (·)‖qṀq,λ(Qnp )

≤ C|Bγ |q(λ−α/n)H ‖χBγ (·)‖Ṁr,β(Qnp )
≤ C.

Applying the
(
Ṁr,β(Qnp ),Ṁq,λ(Qnp )

)
boundedness of Hp,∗α,b, the following can

be confirmed

K2 ≤
C

|Bγ |1+qH

∫
Bγ

∣∣∣∣∣
∫
Qnp\B(0,|x|p)

|z|n−αp

(b(y)− b(z))
|z|n−αp

χBγ (z)dz

∣∣∣∣∣
q

dx

≤ C

|Bγ |1+qα/nH

∫
Bγ

|Hp,∗α,bχBγ (·)|qdx

≤ C|Bγ |q(λ−α/n)H ‖Hp,∗α,bχBγ (·)‖qṀq,λ(Qnp )

≤ C|Bγ |q(λ−α/n)H ‖χBγ (·)‖Ṁr,β(Qnp )
≤ C.

So (17) is a by-product of the estimates for K1 and K2.

Case 2: q < r′. With the
(
Ṁr,β(Qnp ),Ṁq,λ(Qnp )

)
boundedness of Hpα,b and

Hp,∗α,b being replaced by the
(
Ṁq′,β(Qnp ),Ṁr′,λ(Qnp )

)
boundedness of Hpα,b and

Hp,∗α,b, the similar arguments of Case 1 can be applied to this case and show
that

1

|Bγ |H

∫
Bγ

|b(y)− bBγ |r
′
dy ≤ C,

which completes the proof of Theorem 3.2. �
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