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ON THE BETTI NUMBERS OF THREE FAT POINTS IN

P1 × P1

Giuseppe Favacchio and Elena Guardo

Abstract. In these notes we introduce a numerical function which al-

lows us to describe explicitly (and nonrecursively) the Betti numbers, and
hence, the Hilbert function of a set Z of three fat points whose support

is an almost complete intersection (ACI) in P1 × P1. A nonrecursively
formula for the Betti numbers and the Hilbert function of these configu-

rations is hard to give even for the corresponding set of five points on a

special support in P2 and we did not find any kind of this result in the lit-
erature. Moreover, we also give a criterion that allows us to characterize

the Hilbert functions of these special set of fat points.

1. Introduction

The computation of the homological invariants of a scheme is a challenging
problem which involves a strong interaction between Algebraic Geometry and
Commutative Algebra.

Let R := k[Pn] = k[x0, . . . , xn] be the standard polynomial ring over an infi-
nite field. Given P1, . . . , Ps distinct points of Pn and m1, . . . ,ms non negative
integers we call set of fat points Z = m1P1 + · · · + msPs and support of Z is
Supp(Z) = P1 + · · ·+ Ps.

Given a set of fat points Z, the homogeneous ideal in R defining Z is gener-
ated by the homogeneous forms vanishing at each point Pi of Z with multiplicity
at least mi,

IZ :=

s⋂
i=1

Imi

Pi
⊆ R,

where we denoted by IPi the homogeneous ideal defining Pi. The Hilbert func-
tion of Z computes the dimension of the homogeneous components of degree t
of R/IZ for all t ∈ N, i.e.,

HZ(t) := dimk(R/IZ)t for all t > 0,
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i.e., of R/IZ . There are a lot of papers studying the homological invariant of
fat points schemes, mostly in P2, see for example the surveys [9, 16].

Changing the ambient space from a single projective space Pn to a multi-
projective space Pn1 × · · · × Pnr the description of the Hilbert function and
the multigraded Betti numbers of (fat) points scheme became more tricky. An
obstacle is that the coordinate ring of a set of (fat) points in a multiprojective
space is not necessarily Cohen-Macaulay. Several characterizations describe the
Hilbert function and the bigraded Betti numbers of ACM set of (fat) points
in P1 × P1, see for instance [10, 14]. But, without the hypothesis of Cohen-
Macaulayness, we are still far away from a complete understanding of these
homological invariants even for distinct points in P1 × P1. So, any result in
this direction could be interesting. Recently, the first author (see [4]) gave a
characterization of the Hilbert functions of bigraded algebras in k[P1 × P1]. In
[1], the authors compute the bigraded Hilbert function of general triple points
in P1 × P1 and in [6,7] the authors focus on the aritmetically Cohen-Macaulay
property for set of points in multiprojective spaces.

In this paper, we focus on a set Z of fat points whose support Supp(X) is
an almost complete intersection (ACI for short), i.e., the number of minimal
generators of ISupp(X) is one more the codimension. Thus, in P1 × P1 an ideal
of an ACI set of points has exactly three minimal generators.

The motivation of the study of fat points whose support is an ACI in P1×P1

is also related to the study of the comparison of symbolic and regular powers of
ideals of codimension 2 in Pn, that was started in [3]. This can be useful when
studying asymptotic properties of fat point ideals (such as the resurgence, the
symbolic defect and the Waldschmidt constant). Combining together Theo-
rem 1.1 in [13] with Corollary 4.4 in [3], we have that:

Theorem 1.1. Let X ⊆ P1 × P1 be an ACM set of points. Then the following
conditions are equivalent:

• ImX = I
(m)
X for all m ≥ 1;

• I3X = I
(3)
X ;

• X is either a complete intersection or an almost complete intersection.

As a consequence of the above result we have that the description of an ACI
set of points should be of interest. In [5] the authors give a recursive description

of a minimal free resolution of IZ and show that I
(m)
Z = ImZ , for a fat points

scheme Z ⊆ P1 × P1 whose support is an ACI.
In this paper, we compute explicitly the Betti numbers and the Hilbert

function of an ideal of a set of three fat points in P1 × P1 whose support is an
ACI by introducing a specific numerical function (see Definition 3.1). We point
out that this numerical function also allows us to explicitly describe the Betti
numbers and the Hilbert function of an ideal of a set of five fat points in P2

supported on some special configuration (see [11]). In fact, some homological
invariants of a set of points in P1 × P1 can be computed looking at a suitable
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set of points in P2 (see, for example, Section 2.1, Remark 2.3.1 in [12]). In
particular, the Hilbert function in degree (a, b) of a set Z of three fat points
whose support is an ACI in P1 × P1 corresponds to the Hilbert function of a
set of five fat points in P2 as pictured in Figure 1 and Figure 2.

Z =
m21•

m11• m12•

Figure 1. The set of 3 fat points in P1 × P1

m11

m21

bm12

a

Figure 2. The set of 5 fat points in P2

The configuration in Figure 2 was studied (in a more general setting) in [11].
Precisely, it corresponds to configurations of Type 6, Type 8, Type 9 and Type
10 in Fig. 1 in [11] where one of the points has multiplicity 0. We use these
previous known results in the present paper (see Example 5.6). Five points in
P2 always lie on a conic, so such configurations of points have been studied in
detail. For instance, the case of fat point subschemes supported at five general
points was studied by Catalisano in [2] and the case of fat points (or infinitely
near points) supported on a reducible conic was handled by Harbourne in [15].
Additional special configurations, with points of multiplicity 2, are investigated
in [8].

An explicit description of the Betti numbers and the Hilbert function of
these configurations is hard to give even in P2, and we did not find this result
in the literature. All known results are algorithmically computed.

The paper is structured as follow. In Section 2 we describe the connection
between points in P1 × P1 and points in P2. We also recall some results and
notation from [5]. In Section 3 we introduce and study a numerical function
which will be related with the homological invariant of such sets of points. In
Section 4, first, we give a formula to compute the graded Betti numbers and
the Hilbert Function of a set of three fat points on an ACI support.

We point out that the only characterizations of Hilbert functions of set of
points, both reduced or fat, are known only when the set of points is supported
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on an aritmetically Cohen-Macaulay set of points. Here we give a criterion
(Theorem 5.5) that allows us to characterize the Hilbert function for a set of 3
fat points supported on an ACI in P1 × P1.

Acknowledgement. The authors thank B. Harbourne for his helpful com-
ments. The authors also thank G.N.S.A.G.A - Gruppo Nazionale per le Strut-
ture Algebriche, Geometriche e le loro Applicazioni.

2. Notation and preliminary results

Throughout this paper R := k[x0, x1, x2, x3] is the coordinate ring of P1×P1

over an infinite field of characteristic 0, with the bidegree induced by deg x0 =
deg x1 = (1, 0) and deg x2 = deg x3 = (0, 1). We will denote by Hi the hor-
izontal lines, i.e., the lines defined by a form of degree (1, 0) and by Vj the
vertical lines, that are defined by a form of degree (0, 1). We denote the point
in P1×P1 intersection of Hi and Vj by Pij = Hi×Vj . With an abuse of notation
we use Hi and Vj also to denote the correspondent linear forms in R. Then
IPij = (Hi, Vj) will be the ideal defining the point Pij .

Remark 2.1. It can be useful to reinterpret problems involving points of P1×P1

as problems involving points of P2 (see, for example, Section 2.1, Remark 2.3.1
in [12]).

As for 3 points in P1 × P1 corresponding to 5 points in P2, this depends on
thinking of the blow up of P1 × P1 at 1 point as being the blow up of P2 at 2
points.

Let Eij be the blow up of Pij on P1×P1. So we have rH + sV − (m11E11 +
m21E21 + m12E12). This becomes r(L − E2) + s(L − E1) − m11(L − E1 −
E2)−m21E3 −m21E4, where V = L− E1, H = L− E2, E11 = L− E1 − E2,
E1 = H −E11 is the blow up of a point P1 on P2, E2 = V −E11 is the blow up
of a point P2 on P2, E3 is the blow up of a point P3 on E1 (so N1 = E1 − E3

is effective and irreducible), and E4 is the blow up of a point P4 on E2 (so
N2 = E2 − E4 is effective and irreducible).

Alternatively, if we do not to use P11 as the point of P1 × P1 you blow up
to get a 2 point blow up of P2, then let P be a general point of P1 × P1. Blow
up P to get E and blow down V − E to a point P1 of P2 and H − E to a
point P2 of P2. Let Ei be the blow up of Pi, so E1 = V −E and E2 = H −E.
Let Eij be the blow up of Pij . As before V = L − E1, H = L − E2, and
E = L − E1 − E2. Then the points P11, P21 and P12 become points on P2,
where P21 is a point on the line through P1 and P11, and P12 is a point on
the line through P2 and P11. And rH + sV − (m11E11 +m21E21 +m12E12) =
r(L − E2) + s(L − E1) − (m11E11 + m21E21 + m12E12). Thus here you get 5
points of P2 on two lines, where P11 is where the lines cross, and P21, P1 and
P11 are on one line and P12, P2 and P11 are on the other. The line through P1

and P2 is the blow up of the point P on P1 × P1 (see Fig. 1 and Fig. 2). In
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particular, it is

(2.1)
H0(X, rH + sV − (m11E11 +m21E21 +m12E12))

= H0(X, (r + s)L− (m11E11 +m21E21 +m12E12)− rP1 − sP2).

Let X ⊂ P1×P1 be a set of distinct points and positive integers mij , we call
Z =

∑
Pij∈X mijPij a set of fat points supported at X. The associated ideal

to Z is IZ :=
⋂
Pij∈X I

mij

Pij
.

We also recall that if X is a set of distinct points in P1 × P1, then two
points of X are collinear if there is a ruling, either vertical Vj or horizontal Hi,
that contains both of the points. For instance, X = {P11, P12} is a set of two
collinear points since P11 = H1 × V1 and P12 = H1 × V2, i.e., the points lie in
the same ruling H1 or, according to our setting, they lie in the same horizontal
line H1. Analougously, X = {P11, P22} is a set of two non collinear points since
P11 = H1 × V1 and P22 = H2 × V2, i.e., there does not exist a ruling, either
vertical Vj or horizontal Hi, that contains both of the points.

In these note we use the following notation as in [5].

Notation 2.2. We set Z := m11P11 +m12P12 +m21P21, where mij ≥ 0 and,
without loss of generality, m12 ≥ m21. We denote by Z1 = (m11 − 1)+P11 +
m12P12 + (m21 − 1)+P21, where (n)+ := max{n, 0}.

The following results were proven in [5] in a more general setting. For the
convenience of reader, we recall them in a version which is useful to our focus.

Lemma 2.3 (Lemma 2.2, [5]). Let Z = m11P11 + m12P12 ⊆ P1 × P1 be a
set of two collinear fat points. Set M := max{m11,m12}, then a minimal free
resolution of IZ is

0→
M⊕
t=1

R(−t,−(m11 − t+ 1)+ − (m12 − t+ 1)+)

→
M⊕
t=0

R(t,−(m11 − t)+ − (m12 − t)+)→ IZ → 0.

Lemma 2.4 (Lemma 3.4, [5]). Let Z := m12P12 +m21P21 be a set of two non
collinear fat points. Then a minimal free resolution of IZ is

0→
⊕

(a,b,c,d)∈D2

R(−a− b,−c− d)→
⊕

(a,b,c,d)∈D1

R(−a− b,−c− d)→

→
⊕

(a,b,c,d)∈D0

R(−a− b,−c− d)→ IZ → 0

where

D0 := {(a, b, c, d) | 0 ≤ a, d ≤ m12, 0 ≤ b, c ≤ m21, a+ d = m12, b+ c = m21},
D1 := {(a, b, c, d) | 0 ≤ a, d ≤ m12, 0 ≤ b, c ≤ m21,
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(a+ d = m12 + 1, b+ c = m21) ∨ (a+ d = m12, b+ c = m21 + 1)},
D2 := {(a, b, c, d) | 0 ≤ a, d ≤ m12, 0 ≤ b, c ≤ m21, a+ d = m12 + 1,

b+ c = m21 + 1}.

These two lemmas describe the resolution of Z in the degenerate case when
one of the multiplicities is 0. The next result allows us to recursively compute
the resolution of Z in the remaining cases.

Lemma 2.5 (Remark 2.10, Theorem 2.12, [5]). Let Z be as in Notation 2.2,
let 0 → L2 → L1 → L0 be a minimal free resolution of IZ1

. Then a minimal
free resolution for IZ is

0→
⊕

(a,b)∈A2(Z)

R(−a,−b)⊕ L2(0,−1)(2.2)

→
⊕

(a,b)∈A1(Z)

R(−a,−b)2 ⊕R(−m11 −m21,−(m12 −m11)+ − 1)⊕ L1(0,−1)

→
⊕

(a,b)∈A0(Z)

R(−a,−b)⊕ L0(0,−1)→ IZ → 0

where

A0(Z) := {(a, b) | a+ b = m11 +m21 + (m12 −m11)+ and

0 ≤ b ≤ (m12 −m11)+},
A1(Z) := {(a, b) | a+ b = 1 +m11 +m21 + (m12 −m11)+ and

1 ≤ b ≤ (m12 −m11)+},
A2(Z) := {(a, b) | a+ b = 2 +m11 +m21 + (m12 −m11)+ and

2 ≤ b ≤ (m12 −m11)+ + 1}.

3. Numerical facts

We introduce a numerical function depending on a parameter t ∈ Z to
determine explicitly the graded Betti numbers of Z.

Definition 3.1. We define inductively the function ϕt : Z→ Z as follows:

ϕ1(n) =

{
1 if n = 0,

0 otherwise,

and, for t > 1

ϕt(n) =


ϕt−1(n) if 0 ≤ n < t− 1,

ϕt−1(n) + 1 if t− 1 ≤ n < 2t− 1,

0 otherwise.

We will use the convention ϕt(n) = 0 if t ≤ 0.

Remark 3.2. One can inductively check that ϕt(n) =
(⌊

min{n, 2t−2−n}
2

⌋
+ 1
)
+
.
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Definition 3.3. Let t, d ∈ Z be two integers such that t ≥ d, we define the
following function ϕt,d(n) : Z→ Z:

ϕt,d(n) = ϕt(n+ d)− ϕd(n+ d).

We give an example in order to clarify the notation.

Example 3.4. To shorten the notation, we represent the functions as tuples,
where the first entry is their value in 0, the second entry is their value in 1 and
so on.

ϕ1 = (1, 0, 0, . . .),

ϕ2 = (1, 1, 1, 0, 0, . . .),

ϕ3 = (1, 1, 2, 1, 1, 0, . . .),

ϕ4 = (1, 1, 2, 2, 2, 1, 1, 0, . . .),

· · ·
ϕ7 = (1, 1, 2, 2, 3, 3, 4, 3, 3, 2, 2, 1, 1, 0, . . .),

ϕ7 − ϕ4 = (0, 0, 0, 0, 1, 2, 3, 3, 3, 2, 2, 1, 1, 0, . . .),

ϕ7,4 = (1, 2, 3, 3, 3, 2, 2, 1, 1, 0, . . .),

ϕ4,−3 = (0, 0, 0, 1, 1, 2, 2, 2, 1, 1, 0, . . .).

We have the following property.

Proposition 3.5. Let t ≥ d be two integers. Then

ϕt,d+1(n− 1) =

{
ϕt,d(n)− 1 if 0 ≤ n ≤ d,
ϕt,d(n) otherwise.

Proof. By definition, we have ϕt,d+1(n− 1) = ϕt(n+ d)− ϕd+1(n+ d), hence

ϕt,d+1(n− 1) =


ϕt(n+ d)− ϕd(n+ d) if 0 ≤ n+ d < d,

ϕt(n+ d)− ϕd(n+ d)− 1 if d ≤ n+ d < 2d+ 1,

ϕt(n+ d)− 0 otherwise

=

{
ϕt(n+ d)− ϕd(n+ d)− 1 if 0 ≤ n ≤ d,
ϕt(n+ d)− ϕd(n+ d) otherwise. �

4. The graded Betti numbers of IZ

Let X be a set of fat points in P1 × P1 and let IX ⊆ R := k[P1 × P1] be the
bihomogeneous ideal associated to X. Then we can associate to IX a minimal
bigraded free resolution of the form

0→
⊕

R(−i,−j)β2,(i,j)(X) →
⊕

R(−i,−j)β1,(i,j)(X)

→
⊕

R(−i,−j)β0,(i,j)(X) → R→ R/IX → 0,
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where R(−i,−j) is the free R-module obtained by shifting the degrees of R by
(i, j). The graded Betti number βu,(i,j)(X) of R/IX counts the number of a
minimal set of generators of degree (i, j) in the u-th syzygy module of R/IX .

Using the same strategy as in [5] we split the description in two cases.

4.1. First case m11 ≤ m21

Theorem 4.1. With the Notation 2.2, if m11 ≤ m21, then the bigraded Betti
numbers of IZ are:

β0,(a,b)(Z) =

{
(min{a, b−m11,m21 −m11}+ 1)+ + ϕm12,m12−m11

(b) if a+ b = m21 +m12,

0 otherwise,

β1,(a,b)(Z) =
(
β0,(a,b−1)(Z) + β0,(a−1,b)(Z)− 1

)
+
,

β2,(a,b)(Z) =
(
β0,(a−1,b−1)(Z)− 1

)
+
.

Proof. We proceed by induction on m11. Since ϕm12,m12
(b) = 0, if m11 = 0 the

statement is true by Lemma 2.4. Assume m11 > 0, by Lemma 2.5 we get

β0,(a,b)(Z) =


β0,(a,b−1)(Z1) + 1 if a+ b = m12 +m21 and b ≤ m12 −m11,

β0,(a,b−1)(Z1) if a+ b = m12 +m21 and b > m12 −m11,

0 otherwise.

Thus, set S := m12 +m21 and B := m12 −m11, we have

β0,(a,b)(Z) =



(min{a, b−m11,m21 −m11}+ 1)+ + ϕm12,B+1(b− 1) + 1

if a+ b = S and b ≤ B,
(min{a, b−m11,m21 −m11}+ 1)+ + ϕm12,B+1(b− 1)

if a+ b = S and b > B,

0 otherwise

and by using Proposition 3.5 it is

β0,(a,b)(Z) =



(min{a, b−m11,m21 −m11}+ 1)+ + ϕm12,B(b)

if a+ b = S and b ≤ B,
(min{a, b−m11,m21 −m11}+ 1)+ + ϕm12,B(b)

if a+ b = S and b > B,

0 otherwise.

The computation of β1,(a,b)(Z) also follows by induction and Lemma 2.5.

β1,(a,b)(Z)

=


β1,(a,b−1)(Z1) + 2 if a+ b− 1 = m21 +m12 and 1 ≤ b ≤ m12 −m11,

β1,(a,b)(Z) + 1 if (a, b) = (m11 +m21,m12 −m11 + 1),

0 otherwise
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=



β0,(a,b−2)(Z1) + β0,(a−1,b−1)(Z1) + 1

if a+ b− 1 = m21 +m12 and 1 ≤ b ≤ m12 −m11,

β0,(a,b−2)(Z1) + β0,(a−1,b−1)(Z1)

if (a, b) = (m11 −m21,m12 −m11 + 1),

0 otherwise

=



β0,(a,b−1)(Z) + β0,(a−1,b)(Z)− 1

if a+ b− 1 = m21 +m12 and 1 ≤ b ≤ m12 −m11,

β0,(a,b−1)(Z) + β0,(a−1,b)(Z)− 1

if (a, b) = (m11 +m21,m12 −m11 + 1),

0 otherwise.

The computation of β2,(a,b)(Z) requires the same procedure as above by
using the inductive hypotheses and Lemma 2.5. �

We show in the following example how to compute the graded Betti numbers
of a set of three fat points using Theorem 4.1.

Example 4.2. Consider Z = 2P11 + 5P12 + 4P21, to compute β0,(a,b)(Z) we
first need to compute the bigraded Betti numbers of Z ′ := (2− 2)P11 + 5P12 +
(4−2)P21 = 5P12 + 2P21. By Lemma 2.4, the non zero bigraded Betti numbers
of R/IZ′ are:

β0,(7,0)(IZ′) = 1 β1,(7,1)(IZ′) = 2 β2,(7,2)(IZ′) = 1

β0,(6,1)(IZ′) = 2 β1,(6,2)(IZ′) = 4 β2,(6,3)(IZ′) = 2

β0,(5,2)(IZ′) = 3 β1,(5,3)(IZ′) = 5 β2,(5,4)(IZ′) = 2

β0,(4,3)(IZ′) = 3 β1,(4,4)(IZ′) = 5 β2,(4,5)(IZ′) = 2

β0,(3,4)(IZ′) = 3 β1,(3,5)(IZ′) = 5 β2,(3,6)(IZ′) = 2

β0,(2,5)(IZ′) = 3 β1,(2,6)(IZ′) = 4 β2,(2,7)(IZ′) = 1

β0,(1,6)(IZ′) = 2 β1,(1,7)(IZ′) = 2

β0,(0,7)(IZ′) = 1.

Moreover we have ϕ5,3 = (1, 2, 2, 2, 1, 1, 0 . . .). Hence, if a+ b = 9 we have

β0,(a,b)(Z) = β0,(a,b−2)(Z
′) + ϕ5,3(b).

Then the non zero bigraded Betti numbers of R/IZ are:

β0,(9,0)(Z) = 1 β1,(9,1)(Z) = 2 β2,(9,2)(Z) = 1

β0,(8,1)(Z) = 2 β1,(8,2)(Z) = 4 β2,(8,3)(Z) = 2

β0,(7,2)(Z) = 3 β1,(7,3)(Z) = 6 β2,(7,4)(Z) = 3

β0,(6,3)(Z) = 4 β1,(6,4)(Z) = 7 β2,(6,5)(Z) = 3

β0,(5,4)(Z) = 4 β1,(5,5)(Z) = 7 β2,(5,6)(Z) = 3
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β0,(4,5)(Z) = 4 β1,(4,6)(Z) = 6 β2,(4,7)(Z) = 2

β0,(3,6)(Z) = 3 β1,(3,7)(Z) = 5 β2,(3,8)(Z) = 2

β0,(2,7)(Z) = 3 β1,(2,8)(Z) = 4 β2,(2,9)(Z) = 1

β0,(1,8)(Z) = 2 β1,(1,9)(Z) = 2

β0,(0,9)(Z) = 1.

4.2. Second case m11 > m21

To conclude the description of the graded Betti numbers of R/IZ we need
some preliminaries.

Definition 4.3. Let Z = m11P11 + m12P12 + m21P21 be a set of three fat
points in P1×P1, set BZ := m12−m11, we define the following sets of integers
associated to Z:

D1(Z) = {(a, b) ∈ N2 | 0 ≤ b < (−BZ)+ − (−BZ −m21)+ and

a+ 2b = m11 +m21},
D2(Z) = {(a, b) ∈ N2 | (−BZ)+ − (−BZ −m21)+ ≤ b < m21 and

a+ b = max{m11,m12 +m21}},
D3(Z) = {(a, b) ∈ N2 | m21 ≤ b ≤ m21 + |BZ +m21| and

a+ b = max{m11,m12 +m21}},
D4(Z) = {(a, b) ∈ N2 | b > m21 + |BZ +m21| and 2a+ b = m11 +m12}.
As immediate consequences we have:

Lemma 4.4.

i) BZ1 = BZ + 1;
ii) D1(Z) = ∅ if and only if BZ ≥ 0;

iii) D2(Z) = ∅ if and only if B + m21 ≤ 1 (in this case Z is ACM by
Theorem 6.21 [14]);

iv) If BZ < 0 and BZ +m21 = 1, then (a,−BZ) /∈ D3(Z) for any a;
v) If (a, b− 1) ∈ Di(Z1), then (a, b) ∈ Di(Z) for i = 1, 2, 3, 4;

vi) If (a, b) ∈ Di(Z) for some i, then (a, b̄), (ā, b) /∈ Dj for any ā 6= a, b̄ 6= b
and j = 1, 2, 3, 4.

vii) If (a− 1, b) ∈ D4(Z), then (a, b− 1) /∈ D3(Z).

Now we can complete the second case.

Theorem 4.5. If m11 > m21, then the bigraded Betti numbers of R/IZ are:

β0,(a,b)(Z) =



1 if (a, b) ∈ D1(Z),

ϕm21+B,B(b) if (a, b) ∈ D2(Z),

1 + ϕm21+B,B(b) if (a, b) ∈ D3(Z),

1 if (a, b) ∈ D4(Z),

0 otherwise,
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β1,(a,b)(Z) =


1 if (a, b− 1) ∈ D1(Z),

β0,(a,b−1)(Z)+β0,(a−1,b)(Z)−1 if (a, b− 1) ∈ D2(Z) ∪D3(Z),

1 if (a− 1, b) ∈ D4(Z),

0 otherwise,

β2,(a,b)(Z) =

{
β0,(a−1,b−1)(Z)− 1 if (a− 1, b− 1) ∈ D2(Z) ∪D3(Z),

0 otherwise,

where the Di(Z) are defined in Definition 4.3.

Proof. We proceed by induction on m21. If m21 = 0, then Z is a set of 2
collinear (fat) points, D1 = D2 = ∅ and ϕB,B(b) = 0. Therefore the statement
follows by Lemma 2.3. Assume now m21 > 0, by Lemma 2.5 we have

β0,(a,b)(Z) =


β0,(a,b−1)(Z1) + 1 if a+ b = m11 +m21 + (m12 −m11)+

and b ≤ (m12 −m11)+,

β0,(a,b−1)(Z1) otherwise.

If m12 ≤ m11, i.e., BZ < 0 we get

β0,(a,b)(Z) =

{
1 if (a, b) = (m11 +m21, 0),

β0,(a,b−1)(Z1) otherwise.

So, by the inductive hypothesis and using Remark 4.4, we have

β0,(a,b)(Z) =



1 if (a, b) = (m11 +m21, 0),

1 if (a, b− 1) ∈ D1(Z1),

ϕm21+BZ ,BZ+1(b− 1) if (a, b− 1) ∈ D2(Z1),

1 + ϕm21+BZ ,BZ+1(b− 1) if (a, b− 1) ∈ D3(Z1),

1 if (a− 1, b) ∈ D4(Z1),

0 otherwise.

By using Proposition 2.5 we are done. Consider now m12 > m11, i.e., BZ >
0. We get

β0,(a,b)(Z) =

{
β0,(a,b−1)(Z1) + 1 if a+ b = m21 +m12 and b ≤ B,
β0,(a,b−1)(Z1) otherwise,

where, by inductive hypothesis, the bigraded Betti numbers of degree zero of
R/IZ1 are

β0,(a,b−1)(Z1) =


ϕm21+BZ ,BZ+1(b− 1) if (a, b− 1) ∈ D2(Z1),

1 + ϕm21+BZ ,BZ+1(b− 1) if (a, b− 1) ∈ D3(Z1),

1 if (a− 1, b) ∈ D4(Z1),

0 otherwise.
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Therefore, by using Lemma 2.5 and Remark 4.4, we are done. Finally the
computation of β1,(a,b)(Z) and β2,(a,b)(Z) requires the same procedure as above
by using the inductive hypothesis and Lemma 2.5. �

Corollary 4.6. In P1 × P1, let Z = mP11 + mP12 + mP21 be a set of fat
points where all the points have the same multiplicity. Then the bigraded Betti
numbers of IZ are:

β0,(a,b)(Z) =

{
ϕm+1(b) if a+ b = 2m,

0 otherwise,

β1,(a,b)(Z) =
(
β0,(a,b−1)(Z) + β0,(a−1,b)(Z)− 1

)
+
,

β2,(a,b)(Z) =
(
β0,(a−1,b−1)(Z)− 1

)
+
.

Proof. The proof is an immediate consequence of Theorem 4.1 and Proposition
3.5 since we have

β0,(a,b)(Z) =


1 + ϕm(b) if b ≥ m and a+ b = 2m,

ϕm(b) if b < m and a+ b = 2m,

0 otherwise. �

5. The Hilbert function of Z

In this section we explicitly compute the Hilbert function of set of fat points
Z supported on an ACI. Recall that the Hilbert function of Z is a numeric
function HZ := HR/IZ : N2 → N, defined by

HZ(a, b) = dimK(R/IZ)(a,b) = dimk R(a,b) − dimk IZ(a, b).

The first difference of the Hilbert function is defined as

∆HZ(a, b) = HZ(a, b) +HZ(a− 1, b− 1)−HZ(a− 1, b)−HZ(a, b− 1).

From now on we will write (i, j) ≤ (a, b) if and only if both i ≤ a and j ≤ b.
The following results are the multigraded version of well known results for

standard graded algebras. The next lemma shows how we can compute the
Hilbert function of Z from a minimal free resolution of R/IZ .

Lemma 5.1. Let Z be a set of fat points in P1 × P1. Then

HZ(a, b) = (a+ 1)(b+ 1)

−
∑

(i,j)≤(a,b)

(a−i+1)(b−j+1)(β0,(i,j)(Z)−β1,(i,j)(Z)+β2,(i,j)(Z)).

Proof. Since a minimal free resolution of R/IZ

0→
⊕

R(−i,−j)β2,(i,j)(Z) →
⊕

R(−i,−j)β1,(i,j)(Z)

→
⊕

R(−i,−j)β0,(i,j)(Z) → R→ R/IZ → 0
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has bigraded morphisms, we get the following exact sequence of vector spaces

0→
⊕(

R(−i,−j)β2,(i,j)(Z)
)
(a,b)
→
⊕(

R(−i,−j)β1,(i,j)(Z)
)
(a,b)

→
⊕(

R(−i,−j)β0,(i,j)(Z)
)
(a,b)
→ (R)(a,b) → (R/I)(a,b) → 0.

Moreover

dimk

(⊕
R(−i,−j)βu,(i,j)(Z)

)
(a,b)

=
∑

(i,j)≤(a,b)

dimk

(
R(−i,−j)βu,(i,j)(Z)

)
(a,b)

=
∑

(i,j)≤(a,b)

βu,(i,j)(Z)(a− i+ 1)(b− j + 1).

�

Corollary 5.2. Let Bu,(a,b) :=
∑

(i,j)≤(a,b) βu,(a,b)(Z). Then

∆HZ(a, b) = 1−B0,(a,b) +B1,(a,b) −B2,(a,b).

Proof. This follows from Lemma 5.1. �

In the following two propositions we explicitly compute the first difference
of the Hilbert function of Z using Corollary 5.2.

Proposition 5.3. Let Z = m11P11 +m12P12 +m21P21. If m11 ≤ m21, then

∆HZ(a, b) =


1 if a+ b < m12 +m21,

1− β0,(a,b)(Z) if a+ b = m12 +m21,

0 if a+ b > m12 +m21.

Proof. By Theorem 4.1, we have β1,(i,j)(Z) = β0,(i−1,j)(Z)+β0,(i,j−1)(Z)−1 for
i+ j = m12 +m21 + 1 and zero elsewhere, and β2,(i,j)(Z) = β0,(i−1,j−1)(Z)− 1
if and only if i+ j = m12 +m21 +2 (otherwise zero). So, by applying Corollary
5.2 and a machinery computation we are done. �

Proposition 5.4. Let Z = m11P11 +m12P12 +m21P21. If m11 > m21, then

∆HZ(a, b)


1 if (a, b) < (i, j) for some (i, j) ∈ ∪Di(Z),

1− β0,(a,b)(Z) if (a, b) ∈ ∪Di(Z),

0 otherwise.

Proof. The proof uses the same argument as in Proposition 5.3. �

In the last part of these notes we give a criterion to verify if an admissible
function, H : N2 → N, as introduced in [10] Definition 2.2, is the Hilbert
function of a set of at most three (fat) points on an ACI support.
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Theorem 5.5. Let H : N2 → N be an admissible function, and let H(i, j) = γ
for (i, j)� (0, 0). We denote by hij := ∆H(i, j), moreover we set

A
(d)
i :=

d−1∑
j=0

hij , B
(d)
j :=

d−1∑
i=0

hij

and α := max{i | A(d)
i 6= 0} + 1, and β := max{j | B(d)

j 6= 0} + 1. Then we
have the following cases:
Case (1) There exist d, d1, d2 ∈ N such that if i < d1 and j < d2, then hij = 1
if and only if i + j < d. If H is the Hilbert function of a set of points Z :=
m11P11 +m12P12 +m21P21, then (m11,m12,m21) is the solution of one of the
following systems: x+ y = α

x+ z = β
y + z = d

 x+ y = α
y = β

y + z = d z = α
x+ z = β
y + z = d


z = α
y = β(

x+1
2

)
+
(
y+1
2

)
+
(
z+1
2

)
= γ.

Case (2) Assume the first case does not occur. Then H is not the Hilbert
function of any set of points m11P11 +m12P12 +m21P21.

Proof. Case (1). The condition hij = 1 if and only if i+j < d (i < d1, j < d2) is
always verified for sets of three points on an ACI support (see Theorem 4.1 and
Theorem 4.5). In both cases we have m12 +m21 = d. Moreover, from Theorem
2.12 in [10], α and β respectively count the maximum number of point on a
line of type (0, 1) and (1, 0) that are respectively max{m11 + m21,m12} and
max{m11 +m12,m21}. These conditions give arise to four linear systems: x+ y = α

x+ z = β
y + z = d

 x+ y = α
y = β

y + z = d

 z = α
x+ z = β
y + z = d

 z = α
y = β

y + z = d.

But the last system, since in that case α = m12 and β = m12 is not determined.
So we need to replace one equation with

(
x+1
2

)
+
(
y+1
2

)
+
(
z+1
2

)
= γ, that is the

degree of a set of three fat points.
Moreover, from Proposition 5.3 and Proposition 5.4 we can see that Case

(2) does not lead to any set of at most three fat points on an ACI support. �

Given an admissible numerical function H, if Case (1) of Theorem 5.5 occurs,
we are able to construct a set Z of three fat points, that could have Hilbert
function equal to H, by solving the systems. Then, by using Theorem 4.1 and
Proposition 5.3 (or Theorem 4.5 and Proposition 5.4), we check if HZ = H.
The next example shows this procedure.
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Example 5.6. Let H : N2 → N be a numerical function such that

∆H =

0 1 2 3 4 5 6 7 · · ·
0 1 1 1 1 1 1 1 0 · · ·
1 1 1 1 1 1 0 0 0 · · ·
2 1 1 1 1 0 0 0 0 · · ·
3 1 1 1 −1 0 0 0 0 · · ·
4 1 1 −2 0 0 0 0 0 · · ·
5 1 −1 0 0 0 0 0 0 · · ·
6 0 0 0 0 0 0 0 0 · · ·
...

...
...

...
...

...
...

...
...

. . .

Note that we are in Case (1) of Theorem 5.5. In particular, we have d = 6.
Thus γ =

∑
∆H(i, j) = 18, α = 4 and β = 7. So we need to investigate on the

solutions of the following systems:

(i)

 x+ y = 4
x+ z = 7
y + z = 6

(ii)

 x+ y = 4
y = 7

y + z = 6

(iii)

 z = 4
x+ z = 7
y + z = 6

(iv)

 z = 4
y = 7

x2 + x+ 18 = 0.

Note that (i), (ii), (iv) have not solution in N3, i.e., H is the Hilbert function of a
set of fat points Z = m11P11+m12P12+m21P21 if and only if (m11,m12,m21) =
(3, 2, 4), that is the solution of (iii). But from Proposition 5.4 and Theorem
4.5 we have that Z = 3P11 + 2P12 + 4P21 has the first difference of the Hilbert
function equal to

∆HZ =

0 1 2 3 4 5 6 7 · · ·
0 1 1 1 1 1 1 1 0 · · ·
1 1 1 1 1 1 0 0 0 · · ·
2 1 1 1 1 0 0 0 0 · · ·
3 1 1 1 −1 0 0 0 0 · · ·
4 1 1 −1 0 0 0 0 0 · · ·
5 1 −1 0 0 0 0 0 0 · · ·
6 0 0 0 0 0 0 0 0 · · ·
...

...
...

...
...

...
...

...
...

. . .

so H 6= HZ and hence H is not the Hilbert function of any set of at most three
fat points on an ACI support.

We can also use (2.1) and run the script from [11] available at

http://www.math.unl.edu/∼bharbour/6ptres/6reswebsite.html

to see that in P2 the set of five fat points Z = 3P11 + 2P12 + 4P21 + 4P1 + 2P2

has Hilbert function equal dim(IZ)6 = 2 6= 15−H(4, 2) = 3.
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