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FINITE p-GROUPS ALL OF WHOSE SUBGROUPS OF CLASS

2 ARE GENERATED BY TWO ELEMENTS

Pujin Li and Qinhai Zhang

Abstract. We proved that finite p-groups in the title coincide with fi-

nite p-groups all of whose non-abelian subgroups are generated by two
elements. Based on the result, finite p-groups all of whose subgroups of

class 2 are minimal non-abelian (of the same order) are classified, respec-
tively. Thus two questions posed by Berkovich are solved.

1. Introduction

In this note, the groups considered are finite p-groups (in brief, p-groups).
p-groups is the groups of prime-power order. The subgroup of class 2 of a group
means the subgroup of nilpotent class 2. Assume G is a p-group. We use c(G)
and d(G) to denote the nilpotent class and the minimal number of generators
of G respectively. Let

r(G) = max{d(H) | H 6 G} and ri(G) = max{d(H) | H 6 G and c(H) = i}.

Obviously,

r(G) = max{ri(G) | 1 6 i 6 c(G) = c}.
Moreover, if p is an odd prime, then Laffey in [5] have proved that

r(G) = max{r1(G), r2(G)}.

Blackburn in [4, Theorem 4.1] classified p-groups G with r1(G) = 2 and p > 2.
Obviously, r2(G) > 2. A natural question is: what can be said about p-groups
G with r2(G) = 2? The motivation of this note is to classify such p-groups. We
prove that such p-groups coincide with the p-groups all of whose non-abelian
subgroups are generated by two elements, which was classified by Xu et al. in
[8]. The fact implies that

r2(G) = 2⇐⇒ ri(G) = 2 for all i with 2 6 i 6 c.
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If r2(G) > 3, then is it true that ri(G) 6 r2(G) for all i with 3 6 i 6 c? We will
give an example to show that there exists a group G of order 28 with r2(G) = 3
and r3(G) = 4. This above fact motivates us to consider such a question: how
much difference are there between the p-groups determined by some property of
their non-abelian subgroups and the p-groups determined by some property of
their subgroups of class 2? Notice that if G is a minimal non-abelian p-group,
then G is two-generator. Hence as a nontrivial application of the classification
of the p-groups by Xu et al. in [8], p-groups all of whose subgroups of class 2
are minimal non-abelian (of the same order) are respectively classified in this
note. Hence the following two questions posed by Berkovich are solved.

Problem 6 ([3, p337]). Classify the p-groups all of whose subgroups of class 2
are two-generator.

Problem 372 ([1]). Study the p-groups all of whose subgroups of class 2 are
minimal non-abelian.

2. Preliminaries

Following Berkovich and Janko [2], for a positive integer t, a finite p-group
G is called an At-group if its every subgroup of index pt is abelian, but it has
at least one non-abelian subgroup of index pt−1. So A1-groups are nothing but
the minimal non-abelian p-groups. For t 6 3, all At-groups are known (see
[6, 11,12]). We use G ∈ At to denote G is an At-group.

Following Xu et al. [8], Bp denotes the class of p-groups whose non-abelian
proper subgroups are two-generator, B′p denotes the class of groups consisting
of groups in Bp which are neither abelian nor minimal non-abelian, Dp =
{G ∈ B′p | G has an abelian maximal subgroup} and Mp = {G ∈ B′p | G
has no abelian maximal subgroup}. Dp(2) = {G ∈ Dp | d(G) = 2} and
Dp(3) = {G ∈ Dp | d(G) = 3}, D′p(2) = {G ∈ Dp(2) | G is not of maximal
class} and M′p = {G ∈ Mp | G is neither metacyclic nor 3-group of maximal
class}.

In terms of notation mentioned above, the [8, Main Theorem] can be restated
as follows.

Theorem 2.1. Suppose that G is a finite non-abelian p-group. If all non-
abelian proper subgroups of G are two-generator, then G is one of the following
groups:

(1) A1-groups;
(2) A2-groups;
(3) p-groups of maximal class with an abelian maximal subgroup;
(4) 3-groups of maximal class;
(5) D′p(2)-groups with p > 3;
(6) M′3-groups with a unique minimal non-abelian maximal subgroup;
(7)M′p-groups having no minimal non-abelian maximal subgroup, where p >

3;
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(8) metacyclic groups.

Remark 2.2. From the argument in [8] or a simple check, it is not difficult to
get the converse of Theorem 2.1 is also true.

Lemma 2.3 ([12, Lemma 2.6(1-2)]). Assume G ∈ A2. Then d(G) 6 3. If
d(G) = 3, then c(G) = 2.

Lemma 2.4 ([8, Lemma 2.2]). Suppose that G is a finite non-abelian p-group.
Then the following conditions are equivalent.

(1) G is minimal non-abelian;
(2) d(G) = 2 and |G′| = p;
(3) d(G) = 2 and Φ(G) = Z(G).

Proposition 2.5 ([7]). Let G be a metabelian group and a, b ∈ G. For any
positive integers i and j, let

[ia, jb] = [a, b, a, . . . , a︸ ︷︷ ︸
i−1

, b, . . . , b︸ ︷︷ ︸
j−1

].

Then, for any positive integers m and n,

[am, bn] =

m∏
i=1

n∏
j=1

[ia, jb](
m
i )(nj ),(1)

(ab−1)m = am
( ∏

i+j≤m
[ia, jb](

m
i+j)
)
b−m, m ≥ 2.(2)

Lemma 2.6 ([1, Theorem 9.6(e)]). Let G be a group of maximal class and
order pm, p > 2, m > p + 1. Then one of maximal subgroups of G is the
fundamental subgroup and the others are the subgroups of maximal class.

Lemma 2.7 ([1, §9, Exercise 10]). Let G be a 3-group of maximal class. Then
the fundamental subgroup of G is either abelian or minimal non-abelian.

Lemma 2.8 ([8, Theorem 5.4]). Let G ∈ M′p, |G| = pn > p6, p be an odd
prime and K be a maximal subgroup of G. Then

(1) K is not a group of maximal class;
(2) K ∈ A1 or K ∈ D′p(2);
(3) c(G) = n− 2;
(4) If every maximal subgroup of G is not minimal non-abelian, then |G| =

p6.

Lemma 2.9 ([8, Theorem 3.2(1)]). Assume G is a D′p(2)-group and c(G) = c.

If M is a non-abelian subgroup of G with |G : M | = pt, then c > 3, t 6 c− 2,
c(M) = c− t.
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3. The classification of finite p-groups G with r2(G) = 2 and its
application

Assume G is a finite non-abelian p-group. For convenience, we introduce the
following notation.

Qi = {G |G is the p-group whose non-abelian subgroups have property Pi};
Q∗i = {G |G is the p-group whose non-abelian proper subgroups have

property Pi};
Ri = {G |G is the p-group whose subgroups of class 2 have property Pi};
R∗i = {G |G is the p-group whose proper subgroups of class 2 have

property Pi}.

In this note, P1 is “two-generator”, P2 is “minimal non-abelian” and P3 is
“the same order”.

Obviously,

Qi ⊆ Q∗i , Ri ⊆ R∗i , Qi ⊆ Ri, Q∗i ⊆ R∗i and Q∗i ∪Ri = R∗i .

Moreover, in this note we will prove

Q1 = R1, Q∗1 = R∗1, R3 ⊆ R2 ⊆ R1 and R∗3 ⊆ R∗2 ⊆ R∗1.

A nature question is: is it true that Qi = Ri and Q∗i = R∗i for i = 2, 3?
By determining the groups in R2 and R3, we can get the answer is false.

That is,

Qi & Ri and Q∗i & R∗i for i = 2, 3

Theorem 3.1. (1) Q1 = R1; (2) Q∗1 = R∗1; (3) R3 ⊆ R2 ⊆ R1; (4) R∗3 ⊆
R∗2 ⊆ R∗1.

Proof. (1) Obviously, Q1 ⊆ R1. We prove Q1 ⊇ R1. If not, then there exists
G such that G ∈ R1 and G 6∈ Q1. Let K = {K ≤ G | d(K) > 3 and K ′ 6= 1}.
Since G 6∈ Q1, K 6= ∅. Hence there exists K ∈ K such that |K| is of smallest
order. It follows that K ∈ Q∗1. Thus K is isomorphic to one of the groups in
Theorem 2.1. By a simple check we get d(K) = 2 but A2-groups. Hence K is
an A2-group and d(K) > 3. It follows by Lemma 2.3 that c(K) = 2. Notice
that if G ∈ R1, then H ∈ R1 for all H 6 G. Hence K ∈ R1. This contradicts
d(K) > 3. Thus the conclusion follows.

(2) Obviously, Q∗1 ⊆ R∗1. We prove Q∗1 ⊇ R∗1. Let G ∈ R∗1 and H is a
non-abelian proper subgroup of G. Then H ∈ R1. It follows from (1) that
H ∈ Q1. Hence d(H) = 2. Thus the conclusion follows.

(3) It follows from Lemma 2.4 that R2 ⊆ R1. We prove R3 ⊆ R2. Assume
G ∈ R3, H 6 G and c(H) = 2. Let K < H. Since c(H) = 2, c(K) 6 2. Since
G ∈ R3 and c(H) = 2, c(K) 6= 2. Hence K is abelian. It follows that H is
minimal non-ableian. This means G ∈ R2. Thus the conclusion follows.

(4) It is a direct consequence of (3). �
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Now the p-groups in Q∗1 were classified by Xu et al. in [8]. Thus, by Theorem
3.1(1),(2), Lemma 2.3 and the argument of Theorem 3.1(1) we get:

Theorem 3.2. Suppose that G is a finite non-abelian p-group. Then
(1) G ∈ R∗1 if and only if G is one of the groups in Theorem 2.1.
(2) G ∈ R1 if and only if G is one of the groups in Theorem 2.1 except for

A2-groups with three-generator.

In following we determine the groups in R2 and R3.

Theorem 3.3. G ∈ R2 if and only if all A2-subgroups of G are of class 3.

Proof. (=⇒) Let L 6 G and L ∈ A2. Then c(L) 6 3 by [12, Lemma 2.6(1)].
Since G ∈ R2, c(L) = 3.

(⇐=) If not, then there exists L such that L 6 G, c(L) = 2 and L is
not minimal non-abelian. Without loss of generality assume L is an At-group
with t > 2. Let H be an non-abelian subgroup of smallest order of L. By
the definition of At we get |L : H| = pt−1. Thus there exists K satisfying
L ⊇ K ⊇ H and |K : H| = p. Thus K is an A2-group. Since c(L) = 2,
c(K) = 2. This contradicts “all A2-subgroups of G are of class 3”. �

Lemma 3.4. Assume G ∈ R1 and |G′| > p2. Then G ∈ R2 if and only if all
subgroups H of G with |H ′| = p2 are of class 3.

Proof. (=⇒) By hypothesis we get 2 6 c(H) 6 3. Since |H ′| = p2, H is not
minimal non-abelian by Lemma 2.4. It follow by G ∈ R2 that c(H) = 3.

(⇐=) Let L 6 G and c(L) = 2. We need to show L ∈ A1. Since G ∈ R1,
d(L) = 2. Assume L = 〈a, b〉 without loss of generality. Since c(L) = 2,
L′ = 〈[a, b]g | g ∈ G〉 = 〈[a, b]〉 6 Z(L). Let |L′| = pt. If t > 2, then

let K = 〈apt−2

, b〉. We get K ≤ L and |K ′| = p2. Hence c(K) = 3. This
contradicts c(L) = 2. Hence t = 1. It follows by Lemma 2.4 that L ∈ A1. �

Lemma 3.5. Assume G is a 3-group of maximal class which has no abelian
subgroup of index 3. Then one of maximal subgroups of G is minimal non-
abelian and the others are of maximal class with an abelian maximal subgroup.

Proof. Notice that there exists an abelian maximal subgroup in a group of
maximal class with order 34. Hence |G| ≥ 35. By Lemma 2.6, all maximal
subgroups of G are of maximal class except for the fundamental subgroup. The
fundamental subgroup of G is minimal non-abelian by Lemma 2.7. It follows
that Φ(G) is abelian. Moreover, Φ(G) is maximal in all maximal subgroups of
G. �

Lemma 3.6. Suppose that G is a finite non-abelian p-group. Then
(1) if G ∈ A1, then G ∈ R3;
(2) if G ∈ A2 and c(G) = 3, then G ∈ R3;
(3) if G ∈ A2 and c(G) 6= 3, then G 6∈ R2;
(4) if G is a p-group of maximal class with an abelian maximal subgroup,

then G ∈ R3;
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(5) if G is a 3-group of maximal class having no abelian maximal subgroup,
then G ∈ R2\R3;

(6) if G ∈ D′p(2), then G ∈ R3;
(7) if G ∈M′p and G has no minimal non-abelian maximal subgroup, where

p > 3, then G ∈ R3;
(8) if G ∈M′3 and G has a unique minimal non-abelian maximal subgroup,

then G ∈ R2\R3.

Proof. (1) and (2) are trivial. It follows by the definition of At-groups.
(3) It follows by Theorem 3.3.
(4) By [9, Corollary 8.3.2] we know all non-abelian subgroups of G are of

maximal class. Hence all subgroups of class 2 are of order p3. That is, G ∈ R3.
(5) Let M be a subgroup of class 2 of G. Obviously, c(G) > 2. Hence M

is contained in a maximal subgroup of G. By Lemma 3.5, one of maximal
subgroups of G is minimal non-abelian and the others are of maximal class
with an abelian maximal subgroup. If M is contained in a minimal non-abelian
subgroup, then M is minimal non-abelian. If M is contained in a subgroup of
maximal class with an abelian maximal subgroup, then, by the argument of
(4), |M | = 33. Hence M is also minimal non-abelian. In either case, G ∈ R2.

Now G has a subgroup of class 2 of order 33 by the argument above para-
graph. On the other hand, it follows by Lemma 3.5 that G has a maximal
subgroup which is minimal non-abelian. Moreover, |G| > 35 by the argument
of Lemma 3.5. Hence G has a subgroup of class 2 of order great than 33. So
G 6∈ R3.

(6) Let M be a subgroup of class 2 of G. Then |G : M | = pc(G)−2 by Lemma
2.9. That is, all subgroups of class 2 of G are of the same order. Thus G ∈ R3.

(7) Firstly, we claim that each maximal subgroup of G is of class 3. In
fact, let K be a maximal subgroup of G. Since G ∈ M′p, we get c(G) = 4,
K ∈ D′p(2) and c(K) 6= 4 by Theorem 2.8. It follows by c(G) = 4 and c(K) 6= 4
that c(K) ≤ 3. Since K ∈ D′p(2), c(K) = 3 by Lemma 2.9.

Let M be a subgroup of class 2 of G. Since c(G) = 4, M is contained in a
maximal subgroup H of G. Thus |H : M | = pc(H)−2 by Lemma 2.9. Thus all
subgroups of class 2 of G are of the same order. So G ∈ R3.

(8) Let M be a subgroup of class 2 of G. It follows by Lemma 2.8 that
c(G) > 2, and one of maximal subgroups of G is minimal non-abelian and the
others are D′p(2) groups. Hence M is contained in a maximal subgroup of G.
If M is contained in a minimal non-abelian subgroup, then M is minimal non-
abelian. If M is contained in D′p(2) group, then, by (6) and Theorem 3.1(3),
M is also minimal non-abelian. In either case, G ∈ R2.

Since G has a maximal subgroup which is minimal non-abelian, G has a
maximal subgroup M1 of class 2. On the other hand, by the argument of
above paragraph, we get that there exists K ∈ D′p(2) and K is maximal in G.
Then c(K) > 3 by Theorem 2.9. Thus there exits a subgroup M2 of class 2
which is a proper subgroup of K. Obviously, |M1| 6= |M2|. So G 6∈ R3. �
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Theorem 3.7. Suppose that G is a finite nonabelian p-group. Then G ∈ R2

if and only if G is one of the following groups:
(1) One of the groups (1) and (3)-(7) in Theorem 2.1;
(2) A2-groups with class 3;

(3) metacyclic groups: 〈a, b | a2r+s+v+t′+u

= 1, b2
r+s+t

= a2
r+s+v+t′

, ab =

a−1+2r+v 〉, where r, s, v, t, t′ and u are non-negative integers satisfying r > 2,
t′ 6 r, u 6 1, tt′ = sv = tv = 0, 0 6 s + t′ + u 6 2, and u = 0 if t′ > r − 1.

Proof. (=⇒) By Theorem 3.1(3) we get R2 ⊆ R1. By Theorem 3.2(2), G is
one of the groups in Theorem 2.1 except for A2-groups with three-generator. If
G is one of the groups (1)-(7) in Theorem 2.1, then, by Lemma 3.3, we get the
groups (1)-(2) in the Theorem. The remains is the case of G being metacyclic.

Assume G is metacyclic. Then, by [10, Theorems 2.1, 2.2 and Remark 2.3],
G is one of the following groups:

(i) groups with a cyclic subgroup of index p;

(ii) 〈a, b | apr+s+u

= 1, bp
r+s+t

= ap
r+s

, ab = a1+pr 〉, where r, s, t and u are
non-negative integers satisfying u ≤ r, and r ≥ 2 if p = 2; r ≥ 1 if p > 2;

(iii) 〈a, b | a2r+s+v+t′+u

= 1, b2
r+s+t

= a2
r+s+v+t′

, ab = a−1+2r+v 〉, where
r, s, v, t, t′ and u are non-negative integers satisfying r > 2, t′ 6 r, u 6 1,
tt′ = sv = tv = 0, and u = 0 if t′ > r − 1.

If G is the group (i), then G is minimal non-abelian or a group of maximal
class with an abelian maximal subgroup by [1, Theorem 1.2]. They are one of
the groups (1) in the Theorem.

If G is the group (ii), then we will prove r + s + u 6 3. If not, then let

K = 〈a, bps+u−2〉. By calculation, using Proposition 2.5(1), we get

[a, bp
s+u−2

] = [a, b]p
s+u−2

[a, b, b](
ps+u−2

2 ).

Since r+s+u > 3, [a, b, b](
ps+u−2

2 ) = 1. Notice that 〈[x, y]〉EG for any x, y ∈ G.
Thus

K ′ = 〈[a, bp
s+u−2

]〉 = 〈[a, b]p
s+u−2

〉 = 〈ap
r+s+u−2

〉.
Then |K ′| = p2. It follows by Lemma 3.4 that c(K) = 3. Hence K3 6= 1, where
K3 is the third term of the lower center series of G. Notice that

K3 = 〈[ap
r+s+u−2

, bp
s+u−2

]〉 = 〈ap
2r+2s+2u−4

〉.

Hence 2r+2s+2u−4 < r+s+u. That is, r+s+u 6 3. This is a contradiction.
Now it follows from r + s + u 6 3 that |G′| 6 p2. By Theorem 3.1(3),

G ∈ R2 ⊆ R1. Hence non-abelian subgroups of G are generated by two
elements. If |G′| = p, then G ∈ A1 by Lemma 2.4. Thus G is one of the
groups (1) in the Theorem. If |G′| = p2, then it is easy to get |M ′| = p for
each non-abelian maximal subgroup M of G. It follows by Lemma 2.4 that
M ∈ A1. Hence G ∈ A2. Since G ∈ R2, G is the group (2) in the Theorem by
Theorem 3.3.
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If G is the group (iii), then we will prove s + t′ + u 6 2. If not, then let

K = 〈a, b2s+t′+u−2〉. By calculation, using the formula in Proposition 2.5(1),
we get

[a, b2
s+t′+u−2

] = a−1ab
2s+t′+u−2

= a−1a(−1+2r+v)
2s+t′+u−2

.

Since s + t′ + u > 2,

〈a−1a(−1+2r+v)
2s+t′+u−2

〉 = 〈ap
r+s+v+t′+u−2

〉.

Thus 〈[a, bps+t′+u−2

]〉 = 〈apr+s+v+t′+u−2〉. Hence

|K ′| = |〈[a, bp
s+t′+u−2

]〉| = |〈ap
r+s+v+t′+u−2

〉| = p2.

It follows by Lemma 3.4 that c(K) = 3. Hence K3 6= 1. Notice that

K3 = 〈[ap
r+s+v+t′+u−2

, bp
s+t′+u−2

]〉 = 〈ap
2(r+s+v+t′+u−2)

〉.
Hence 2(r+s+v+ t′+u−2) < r+s+v+ t′+u. That is, r+s+v+ t′+u 6 3.
This is a contradiction. We get the groups (3) in the Theorem.

(⇐=) If G is one of the groups (1)-(2), then G ∈ R2 by Theorem 3.6. We
will prove all subgroups of class 2 in the groups (3) are minimal non-abelian.
Assume G is the group (3), H 6 G and |H ′| = 4. By Lemma 3.4 it is enough
to show c(H) = 3.

It is easy to see that H ′ = 〈a2r+s+v+t′+u−2〉. Assume H = 〈ai1bj1 , ai2bj2〉
without loss of generality, where i1, i2, j1, j2 are integer numbers. Let M =
〈a, b2〉. Then

[a, b2] = a−1ab
2

= a(−1+ar+v)2−1.

Obviously, 2r+v+1 | (−1 + ar+v)2 − 1. Since s + t′ + u 6 2, |M ′| ≤ 2. If 2 | j1
and 2 | j2, then H ≤ M . This contradicts |H ′| = 4. Hence 2 - j1 or 2 - j2.
Assume 2 - j1 without loss of generality. It easy to see that

[ai1bj1 , a2
r+s+v+t′+u−2

] = [bj1 , a2
r+s+v+t′+u−2

].

Since a2
r+s+v+t′+u−2 6∈ Z(G), [bj1 , a2

r+s+v+t′+u−2

] 6= 1. Hence H3 6= 1. So
c(H) = 3. The proof is complete. �

Theorem 3.8. Suppose that G is a finite nonabelian p-group. Then G ∈ R3

if and only if G is one of the following groups:
(1) One of the groups (1), (3), (5) and (7) in Theorem 2.1;
(2) the groups (2) in Theorem 3.7;
(3) the groups (3) in Theorem 3.7 with s + t′ + u 6 1.

Proof. (=⇒) By Theorem 3.1(3) we get R3 ⊆ R2. Thus G is one of the groups
in Theorem 3.7. If G is one of the groups (1)-(2) in Theorem 3.7, then, by
Lemma 3.6, we get the groups (1)-(2) in the Theorem. If G is the group (3) in

Theorem 3.7, then we will prove s+ t′ + u 6 1. If not, then let H1 = 〈a2r+v

, b〉
and H2 = 〈a, b2〉. It is easy to get |H ′1| = |H ′2| = 2. Hence H1 and H2 are
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of class 2. Since r > 2, H1 is not maximal in G. On the other hand, H2 is
maximal in G. Hence |H1| 6= |H2|. This contradicts G ∈ R3. So s+ t′+u 6 1.
We get the group (3) in the Theorem.

(⇐=) If G is one of the groups (1)-(2), then G ∈ R3 by Theorem 3.6. If G
is the group (3), then each subgroup K of class 2 of G is minimal non-abelian.
It follows by Lemma 2.4 that |K ′| = 2. It is enough to show each subgroup H
of G with |H ′| = 2 is of the same order. Without loss of generality assume

H = 〈bj1ai1 , bj2ai2〉,

where i1, i2, j1, j2 are integer numbers. Notice that

[a, b2] = a−1ab
2

= a(−1+ar+v)2−1.

Obviously, 2r+v+1 | (−1 + ar+v)2 − 1. Since s + t′ + u 6 1, b2 ∈ Z(G). If 2 | j1
and 2 | j2, then H is abelian. This contradicts |H ′| = 2. Hence 2 - j1 or 2 - j2.
Assume 2 - j1 without loss of generality. By calculation we have that there

exists k1 such that (bj1ai1)j
−1
1 = bak1 . Then H = 〈bak1 , bj2ai2〉. Moreover,

there exists k2 such that (bak1)j
−1
2 bj2ai2 = ak2 . Thus H = 〈bak1 , ak2〉. Now

H ′ = 〈[bak1 , ak2 ]〉 = 〈[b, ak2 ]〉 = 〈a2k2〉.

On the other hand, since |H ′| = 2, H ′ = 〈a2r+s+v+t′+u−1〉.
Let n = r + s + v + t′ + u. Then 2k2 ≡ 2n−1(mod 2n). That is, k2 ≡

2n−2(mod 2n−1). Hence

H = 〈bak1 , a2
n−2

〉.
By calculation we get

(bak1)2 = b2ak12
r+v

6= 1, (bak1)4 = (b2ak12
r+v

)2 = b4ak12
r+v+1

= b4.

Hence

|H| = |〈bak1 , a2
n−2

〉| = |〈a2n−2〉||〈bak1〉|
|〈a2n−2〉 ∩ 〈bak1〉|

=
|〈a2n−2〉||〈b〉|
|〈a2n−2〉 ∩ 〈b〉|

.

By the arbitrary of H, the conclusion follows. �

Corollary 3.9. Suppose that G is a finite non-abelian p-group. Then
(1) if G is non-metacyclic, then G ∈ R2 if and only if G ∈ R1;
(2) If G has no minimal non-abelian maximal subgroup, then G ∈ R3 if and

only if G ∈ R2.

Proof. (1) By Theorem 3.2 and Theorem 3.7, it is enough to check non-meta-
cyclic A2-groups G with d(G) 6= 3 are of class 3. A2-groups are listed in [11]
or [12, Lemma 2.5]. This is a routine work.

(2) It follows by Theorem 3.7, Theorem 3.8 and Lemma 3.5. �

Corollary 3.10. Qi & Ri and Q∗i & R∗i for i = 2, 3.
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Proof. Let G be a maximal class group of order 35 and G have an abelian
maximal subgroup. Then G ∈ Ri for i = 2, 3 by Theorem 3.7 and Theorem
3.8. Thus G ∈ R∗i for i = 2, 3. It is obvious that |Z(G)| = p. Thus there is a
non-abelian subgroup H of order 34 of G. By [9, Corollary 8.3.2] we know all
non-abelian subgroups of G are of maximal class. Hence c(H) = 3. So H is
not a minimal non-abelian group by Lemma 2.4. Then G 6∈ Q∗2. It follows by
Q∗3 ⊆ Q∗2 that G 6∈ Q∗3. Obviously, G 6∈ Qi for i = 2, 3. �

4. An example of a p-group G with r2(G) = 3 and r3(G) = 4

Theorem 3.1(1) means such a fact that r2(G) = 2 ⇐⇒ ri(G) = 2 for all i
with 2 6 i 6 c(G). In other words, if r2(G) = 2, then ri(G) ≤ r2(G) for all i
with 3 6 i 6 c(G). However, if r2(G) > 3, then the fact is not true. Here we
give an example to show that there exists a group G of order 28 with r2(G) = 3
and r3(G) = 4. First we give a lemma as follows.

Lemma 4.1. Let G = 〈a, b, c, d
∣∣ a4 = b4 = c4 = 1, d2 = b2c2, [a, b] = [a, c] =

1, [a, d] = [b, d] = a2, [b, c] = a2b2, [c, d] = a2c2〉. Then d(H) 6 3 for H < G.

Proof. By a simple checking we know that G ∈ A4 and |G| = 27, and

Ω1(G) = f1(G) = Z(G) = G′ ∼= C3
2 .

It follows that d(H) 6 3 if H is abelian. By Lemma 2.4 we get d(H) = 2
if H ∈ A1. It follows that d(H) 6 3 if H ∈ A2. So it needs only to show
d(H) 6 3 for any A3-subgroup H of G. If not, then there exists M ∈ A3

and d(M) > 4. Let G = G/〈a2〉. Then G = 〈ā〉 × 〈b̄, c̄, d̄〉, where 〈b̄, c̄, d̄〉 is a
minimal non-metacyclic group of order 25. Obviously, all maximal subgroups of
G are three-generator. It follows that d(M) = 3. It follows from d(M) > d(M)
that a2 /∈ Φ(M). Hence a /∈ M . Thus M = 〈bai, caj , dak, a2〉, where i, j, k ∈
{0, 1}. Let K = 〈bai, caj , dak〉. Since d(M) > 4, a2 /∈ K. On the other hand,
[caj , dak](caj)2 = (c2a2a2j)(c2a2j) = a2 ∈ K. This is a contradiction. �

Example 4.2. Let G = 〈a, b, c, d
∣∣ a8 = b4 = c4 = 1, d2 = a4b2c2, [a, b] =

[a, c] = [b, c2] = 1, [a, d] = [b, d] = a2, [b, c] = a2b2, [c, d] = a−2c2〉 and H be
a non-abelian proper subgroup of G. Then |G| = 28, c(G) = 3, d(G) = 4 and
d(H) 6 3.

Proof. Let K = 〈a, b, c2
∣∣ a8 = b4 = c4 = 1, [a, b] = [a, c2] = [b, c2] = 1〉. Then

K ∼= C8 × C4 × C2. Let

M = 〈K, c〉= 〈a, b, c
∣∣ a8 = b4 = c4 = 1, [a, b] = [a, c] = [b, c2] = 1, [b, c] = a2b2〉.

Then M is an extension of K by C2. It is easy to verify that G is an extension
of M by C2. Thus |G| = 28.

By calculation we get

G′ = f1(G) = Φ(G) = 〈a2〉 × 〈b2〉 × 〈c2〉 ∼= C4 ×C2 ×C2 and G3 = 〈a4〉 ∼= C2,
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where G3 is the third term of the lower central series of G. Thus d(G) = 4 and
c(G) = 3.

In following we prove d(H) ≤ 3. First we have the following facts:
(1) Ω1(G) ∼= C3

2 ;
(2) Ω2(CG(Ω1(G)) ∼= C2

4 × C2;
(3) f2(G) = G3 = 〈a4〉 ∼= C2;
(4) G = G/f2(G) ∼= L, where L is the group described in Lemma 4.1.
Assume the conclusion is false. Then there exists H < G such that d(H) >

4. If f2(G) 
 H or f2(G) 6 Φ(H), then it follows by Lemma 4.1 that
d(H) 6 3. This contradicts d(H) > 4. If f2(G) ∈ H\Φ(H), then we may
assume H = K × f2(G). Since d(H) > 4, d(K) > 3. Then K has a normal
subgroup N of type (2, 2). It follows from N/C-theorem that |K : CK(N)| 6 2.
Notice that Ω1(G) = N × f2(G). Then f2(G) 
 CK(N) 6 CG(Ω1(G)). In
particular, CK(N) 6 Ω2(CG(Ω1(G)). From (2) we get f1(Ω2(CG(Ω1(G)))) ∼=
C2

2 . Obviously, f2(G) 6 f1(Ω2(CG(Ω1(G)))). Hence f1(Ω2(CK(N))) 6 C2.
This means CK(N) . C2×C2. It follows that |K| 6 24. From (1) we know H is
non-abelian. Hence K is non-abelian. Since d(K) > 3, K has an A1-subgroup
of order 8. Moreover, K ∼= Kf2(G)/f2(G) 6 G ∼= L. This contradicts L ∈
A4. �
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