DOI QR코드

DOI QR Code

STABLE AND ROBUST ℓp-CONSTRAINED COMPRESSIVE SENSING RECOVERY VIA ROBUST WIDTH PROPERTY

  • Yu, Jun (Department of Mathematics and Mathematical Statistics Umea University) ;
  • Zhou, Zhiyong (Department of Mathematics and Mathematical Statistics Umea University)
  • Received : 2018.05.09
  • Accepted : 2018.12.06
  • Published : 2019.05.01

Abstract

We study the recovery results of ${\ell}_p$-constrained compressive sensing (CS) with $p{\geq}1$ via robust width property and determine conditions on the number of measurements for standard Gaussian matrices under which the property holds with high probability. Our paper extends the existing results in Cahill and Mixon from ${\ell}_2$-constrained CS to ${\ell}_p$-constrained case with $p{\geq}1$ and complements the recovery analysis for robust CS with ${\ell}_p$ loss function.

Keywords

Acknowledgement

Supported by : Swedish Research Council

References

  1. Z. Allen-Zhu, R. Gelashvili, and I. Razenshteyn, Restricted isometry property for general p-norms, IEEE Trans. Inform. Theory 62 (2016), no. 10, 5839-5854. https://doi.org/10.1109/TIT.2016.2598296
  2. J. Cahill and D. G. Mixon, Robust width: A characterization of uniformly stable and robust compressed sensing, arXiv preprint arXiv:1408.4409, 2014.
  3. E. J. Candes, The restricted isometry property and its implications for compressed sensing, C. R. Math. Acad. Sci. Paris 346 (2008), no. 9-10, 589-592. https://doi.org/10.1016/j.crma.2008.03.014
  4. E. J. Candes, J. K. Romberg, and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Comm. Pure Appl. Math. 59 (2006), no. 8, 1207-1223. https://doi.org/10.1002/cpa.20124
  5. E. Candes and T. Tao, The Dantzig selector: statistical estimation when p is much larger than n, Ann. Statist. 35 (2007), no. 6, 2313-2351. https://doi.org/10.1214/009053606000001523
  6. A. Cohen, W. Dahmen, and R. DeVore, Compressed sensing and best k-term approximation, J. Amer. Math. Soc. 22 (2009), no. 1, 211-231. https://doi.org/10.1090/S0894-0347-08-00610-3
  7. S. Dirksen, G. Lecue, and H. Rauhut, On the gap between restricted isometry properties and sparse recovery conditions, IEEE Trans. Inform. Theory 64 (2018), no. 8, 5478-5487. https://doi.org/10.1109/TIT.2016.2570244
  8. D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory 52 (2006), no. 4, 1289-1306. https://doi.org/10.1109/TIT.2006.871582
  9. M. F. Duarte and Y. C. Eldar, Structured compressed sensing: from theory to applications, IEEE Trans. Signal Process. 59 (2011), no. 9, 4053-4085. https://doi.org/10.1109/TSP.2011.2161982
  10. Y. C. Eldar, P. Kuppinger, and H. Bolcskei, Block-sparse signals: uncertainty relations and efficient recovery, IEEE Trans. Signal Process. 58 (2010), no. 6, 3042-3054. https://doi.org/10.1109/TSP.2010.2044837
  11. Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications, Cambridge University Press, 2012.
  12. S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing, Applied and Numerical Harmonic Analysis, Birkhauser/Springer, New York, 2013.
  13. M. P. Friedlander, H. Mansour, R. Saab, and O. Yilmaz, Recovering compressively sampled signals using partial support information, IEEE Trans. Inform. Theory 58 (2012), no. 2, 1122-1134. https://doi.org/10.1109/TIT.2011.2167214
  14. L. Jacques, D. K. Hammond, and J. M. Fadili, Dequantizing compressed sensing: when oversampling and non-Gaussian constraints combine, IEEE Trans. Inform. Theory 57 (2011), no. 1, 559-571. https://doi.org/10.1109/TIT.2010.2093310
  15. M. Kabanava, R. Kueng, H. Rauhut, and U. Terstiege, Stable low-rank matrix recovery via null space properties, Inf. Inference 5 (2016), no. 4, 405-441. https://doi.org/10.1093/imaiai/iaw014
  16. H. Mansour and R. Saab, Recovery analysis for weighted ${\ell}_1$-minimization using the null space property, Appl. Comput. Harmon. Anal. 43 (2017), no. 1, 23-38. https://doi.org/10.1016/j.acha.2015.10.005
  17. D. Needell and R.Ward, Near-optimal compressed sensing guarantees for total variation minimization, IEEE Trans. Image Process. 22 (2013), no. 10, 3941-3949. https://doi.org/10.1109/TIP.2013.2264681
  18. D. Needell and R.Ward, Stable image reconstruction using total variation minimization, SIAM J. Imaging Sci. 6 (2013), no. 2, 1035-1058. https://doi.org/10.1137/120868281
  19. H. Rauhut and R. Ward, Interpolation via weighted ${\ell}_1$ minimization, Appl. Comput. Harmon. Anal. 40 (2016), no. 2, 321-351. https://doi.org/10.1016/j.acha.2015.02.003
  20. A. A. Saleh, F. Alajaji, and W. Y. Chan, Compressed sensing with non-Gaussian noise and partial support information, IEEE Signal Processing Letters 22 (2015), no. 10, 1703-1707. https://doi.org/10.1109/LSP.2015.2426654
  21. G. Tang and A. Nehorai, Performance analysis of sparse recovery based on constrained minimal singular values, IEEE Trans. Signal Process. 59 (2011), no. 12, 5734-5745. https://doi.org/10.1109/TSP.2011.2164913
  22. R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B 58 (1996), no. 1, 267-288.
  23. F. Wen, P. Liu, Y. Liu, R. C. Qiu, and W. Yu, Robust sparse recovery in impulsive noise via ${\ell}_p$-${\ell}_1$ optimization, IEEE Trans. Signal Process. 65 (2017), no. 1, 105-118. https://doi.org/10.1109/TSP.2016.2598316
  24. H. Zhang, On robust width property for Lasso and Dantzig selector, Commun. Math. Sci. 15 (2017), no. 8, 2387-2393. https://doi.org/10.4310/CMS.2017.v15.n8.a11
  25. H. Zhang and L. Cheng, On the constrained minimal singular values for sparse signal recovery, IEEE Signal Processing Letters 19 (2012), no. 8, 499-502. https://doi.org/10.1109/LSP.2012.2203802
  26. Z. Zhou and J. Yu, Sparse recovery based on q-ratio constrained minimal singular values, Signal Processing 155 (2019), 247-258. https://doi.org/10.1016/j.sigpro.2018.10.002