Acknowledgement
Supported by : Swedish Research Council
References
- Z. Allen-Zhu, R. Gelashvili, and I. Razenshteyn, Restricted isometry property for general p-norms, IEEE Trans. Inform. Theory 62 (2016), no. 10, 5839-5854. https://doi.org/10.1109/TIT.2016.2598296
- J. Cahill and D. G. Mixon, Robust width: A characterization of uniformly stable and robust compressed sensing, arXiv preprint arXiv:1408.4409, 2014.
- E. J. Candes, The restricted isometry property and its implications for compressed sensing, C. R. Math. Acad. Sci. Paris 346 (2008), no. 9-10, 589-592. https://doi.org/10.1016/j.crma.2008.03.014
- E. J. Candes, J. K. Romberg, and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Comm. Pure Appl. Math. 59 (2006), no. 8, 1207-1223. https://doi.org/10.1002/cpa.20124
- E. Candes and T. Tao, The Dantzig selector: statistical estimation when p is much larger than n, Ann. Statist. 35 (2007), no. 6, 2313-2351. https://doi.org/10.1214/009053606000001523
- A. Cohen, W. Dahmen, and R. DeVore, Compressed sensing and best k-term approximation, J. Amer. Math. Soc. 22 (2009), no. 1, 211-231. https://doi.org/10.1090/S0894-0347-08-00610-3
- S. Dirksen, G. Lecue, and H. Rauhut, On the gap between restricted isometry properties and sparse recovery conditions, IEEE Trans. Inform. Theory 64 (2018), no. 8, 5478-5487. https://doi.org/10.1109/TIT.2016.2570244
- D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory 52 (2006), no. 4, 1289-1306. https://doi.org/10.1109/TIT.2006.871582
- M. F. Duarte and Y. C. Eldar, Structured compressed sensing: from theory to applications, IEEE Trans. Signal Process. 59 (2011), no. 9, 4053-4085. https://doi.org/10.1109/TSP.2011.2161982
- Y. C. Eldar, P. Kuppinger, and H. Bolcskei, Block-sparse signals: uncertainty relations and efficient recovery, IEEE Trans. Signal Process. 58 (2010), no. 6, 3042-3054. https://doi.org/10.1109/TSP.2010.2044837
- Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications, Cambridge University Press, 2012.
- S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing, Applied and Numerical Harmonic Analysis, Birkhauser/Springer, New York, 2013.
- M. P. Friedlander, H. Mansour, R. Saab, and O. Yilmaz, Recovering compressively sampled signals using partial support information, IEEE Trans. Inform. Theory 58 (2012), no. 2, 1122-1134. https://doi.org/10.1109/TIT.2011.2167214
- L. Jacques, D. K. Hammond, and J. M. Fadili, Dequantizing compressed sensing: when oversampling and non-Gaussian constraints combine, IEEE Trans. Inform. Theory 57 (2011), no. 1, 559-571. https://doi.org/10.1109/TIT.2010.2093310
- M. Kabanava, R. Kueng, H. Rauhut, and U. Terstiege, Stable low-rank matrix recovery via null space properties, Inf. Inference 5 (2016), no. 4, 405-441. https://doi.org/10.1093/imaiai/iaw014
-
H. Mansour and R. Saab, Recovery analysis for weighted
${\ell}_1$ -minimization using the null space property, Appl. Comput. Harmon. Anal. 43 (2017), no. 1, 23-38. https://doi.org/10.1016/j.acha.2015.10.005 - D. Needell and R.Ward, Near-optimal compressed sensing guarantees for total variation minimization, IEEE Trans. Image Process. 22 (2013), no. 10, 3941-3949. https://doi.org/10.1109/TIP.2013.2264681
- D. Needell and R.Ward, Stable image reconstruction using total variation minimization, SIAM J. Imaging Sci. 6 (2013), no. 2, 1035-1058. https://doi.org/10.1137/120868281
-
H. Rauhut and R. Ward, Interpolation via weighted
${\ell}_1$ minimization, Appl. Comput. Harmon. Anal. 40 (2016), no. 2, 321-351. https://doi.org/10.1016/j.acha.2015.02.003 - A. A. Saleh, F. Alajaji, and W. Y. Chan, Compressed sensing with non-Gaussian noise and partial support information, IEEE Signal Processing Letters 22 (2015), no. 10, 1703-1707. https://doi.org/10.1109/LSP.2015.2426654
- G. Tang and A. Nehorai, Performance analysis of sparse recovery based on constrained minimal singular values, IEEE Trans. Signal Process. 59 (2011), no. 12, 5734-5745. https://doi.org/10.1109/TSP.2011.2164913
- R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B 58 (1996), no. 1, 267-288.
-
F. Wen, P. Liu, Y. Liu, R. C. Qiu, and W. Yu, Robust sparse recovery in impulsive noise via
${\ell}_p$ -${\ell}_1$ optimization, IEEE Trans. Signal Process. 65 (2017), no. 1, 105-118. https://doi.org/10.1109/TSP.2016.2598316 - H. Zhang, On robust width property for Lasso and Dantzig selector, Commun. Math. Sci. 15 (2017), no. 8, 2387-2393. https://doi.org/10.4310/CMS.2017.v15.n8.a11
- H. Zhang and L. Cheng, On the constrained minimal singular values for sparse signal recovery, IEEE Signal Processing Letters 19 (2012), no. 8, 499-502. https://doi.org/10.1109/LSP.2012.2203802
- Z. Zhou and J. Yu, Sparse recovery based on q-ratio constrained minimal singular values, Signal Processing 155 (2019), 247-258. https://doi.org/10.1016/j.sigpro.2018.10.002