DOI QR코드

DOI QR Code

Circulating Permeability Factors in Idiopathic Nephrotic Syndrome

  • Ha, Tae-Sun (Department of Pediatrics, College of Medicine and Medical Research Institute, Chungbuk National University)
  • Received : 2019.03.26
  • Accepted : 2019.04.11
  • Published : 2019.04.30

Abstract

Nephrotic syndrome (NS) is a common chronic glomerular disease in children characterized by significant proteinuria with resulting hypoalbuminemia, edema, and hyperlipidemia. Renal biopsy findings of diffuse foot processes effacement on electron microscopy and minimal change disease, focal segmental glomerulosclerosis (FSGS), or diffuse mesangial proliferation on light microscopy. It has been speculated that circulating permeability factors would be implicated in the pathogenesis of NS because they have been reportedly detected in the sera of patients and in experimental models of induced proteinuria. Moreover, a substantial portion of the patients with primary FSGS recurrence shortly after transplantation. This report reviews the current knowledge regarding the role of circulating permeability factors in the pathogenesis of proteinuria in NS and suggests future targeted therapeutic approaches for NS.

Keywords

References

  1. Eddy AA, Symons JM. Nephrotic syndrome in childhood. Lancet 2003;362:629-39. https://doi.org/10.1016/S0140-6736(03)14184-0
  2. Sinha A, Bagga A. Nephrotic syndrome. Indian J Pediatr 2012;79:1045-55. https://doi.org/10.1007/s12098-012-0776-y
  3. Vivarelli M, Massella L, Ruggiero B, Emma F. Minimal change disease. Clin J Am Soc Nephrol 2017;12:332-45. https://doi.org/10.2215/CJN.05000516
  4. Noone DG, Iijima K, Parekh R. Idiopathic nephrotic syndrome in children Lancet 2018;392(10141):61-74. https://doi.org/10.1016/S0140-6736(18)30536-1
  5. Ha TS. Roles of adaptor proteins in podocyte biology. World J Nephrol 2013;2:1-10. https://doi.org/10.5527/wjn.v2.i1.1
  6. Cara-Fuentes G, Clapp WL, Johnson RJ, Garin EH. Pathogenesis of proteinuria in idiopathic minimal change disease: molecular mechanisms. Pediatr Nephrol 2016;31:2179-89. https://doi.org/10.1007/s00467-016-3379-4
  7. Ha TS. Genetics of hereditary nephrotic syndrome: a clinical review. Korean J Pediatr 2017;60:55-63. https://doi.org/10.3345/kjp.2017.60.3.55
  8. Shalhoub RJ. Pathogenesis of lipoid nephrosis: a disorder of T-cell function. Lancet 1974;2:556-60. https://doi.org/10.1016/S0140-6736(74)91880-7
  9. Davin JC. The glomerular permeability factors in idiopathic nephrotic syndrome. Pediatr Nephrol 2016;31:207-15. https://doi.org/10.1007/s00467-015-3082-x
  10. Musante L, Candiano G, Zennaro C, Bruschi M, Carraro M, Artero M, et al. Humoral permeability factors in the nephrotic syndrome: a compendium and prospectus. J Nephrol 2001;14 Suppl 4:S48-50.
  11. Lagrue G, Branellec A, Niaudet P, Heslan JM, Guillot F, Lang P. Transmission of nephrotic syndrome to two neonates. Spontaneous regression. Presse Med 1991;20:255-7.
  12. Kemper MJ, Wolf G, Muller-Wiefel DE. Transmission of glomerular permeability factor from a mother to her child. N Engl J Med 2001;344:386-7. https://doi.org/10.1056/NEJM200102013440517
  13. Zimmerman SW. Increased urinary protein excretion in the rat produced by serum from a patient with recurrent focal glomerular sclerosis after renal transplantation. Clin Nephrol 1984;22: 32-8.
  14. Sharma M, Sharma R, Reddy SR, McCarthy ET, Savin VJ. Proteinuria after injection of human focal segmental glomerulosclerosis factor. Transplantation 2002;73: 366-72. https://doi.org/10.1097/00007890-200202150-00009
  15. Raij L, Hoyer JR, Michael AF. Steroid-resistant nephrotic syndrome: recurrence after transplantation. Ann Intern Med 1972;77:581-6. https://doi.org/10.7326/0003-4819-77-4-581
  16. Hoyer JR, Vernier RL, Najarian JS, Raij L, Simmons RL, Michael AF. Recurrence of idiopathic nephrotic syndrome after renal transplantation. Lancet 1972;2:343-8.
  17. Fine RN. Recurrence of nephrotic syndrome/focal segmental glomerulosclerosis following renal transplantation in children. Pediatr Nephrol 2007;22:496-502. https://doi.org/10.1007/s00467-006-0361-6
  18. Zimmerman SW. Plasmapheresis and dipyridamole for recurrent focal glomerular sclerosis. Nephron 1985;40:241-5. https://doi.org/10.1159/000183469
  19. Artero M, Biava C, Amend W, Tomlanovich S, Vincenti F. Recurrent focal glomerulosclerosis: Natural history and response to therapy. Am J Med 1992;92:375-83. https://doi.org/10.1016/0002-9343(92)90267-F
  20. Dantal J, Bigot E, Bogers W, Testa A, Kriaa F, Jacques Y, et al. Effect of plasma protein adsorption on protein excretion in kidneytransplant recipients with recurrent nephrotic syndrome. N Engl J Med 1994;330:7-14. https://doi.org/10.1056/NEJM199401063300102
  21. Artero ML, Sharma R, Savin VJ, Vincenti F. Plasmapheresis reduces proteinuria and serum capacity to injure glomeruli in patients with recurrent focal glomerulosclerosis. Am J Kidney Dis 1994;23:574-81. https://doi.org/10.1016/S0272-6386(12)80381-7
  22. Gohh RY, Yango AF, Morrissey PE, Monaco AP, Gautam A, Sharma M, et al. Preemptive plasmapheresis and recurrence of FSGS in high-risk renal transplant recipients. Am J Transplant 2005;5:2907-12. https://doi.org/10.1111/j.1600-6143.2005.01112.x
  23. Suthar K, Vanikar AV, Trivedi HL. Renal transplantation in primary focal segmental glomerulosclerosis using a tolerance induction protocol. Transplant Proc 2008;40:1108-10. https://doi.org/10.1016/j.transproceed.2008.03.076
  24. Gallon L, Leventhal J, Skaro A, Kanwar Y, Alvarado A. Resolution of recurrent focal segmental glomerulosclerosis after retransplantation. N Engl J Med 2012;366:1648-9. https://doi.org/10.1056/NEJMc1202500
  25. Rea R, Smith C, Sandhu K, Kwan J, Tomson C. Successful transplant of a kidney with focal segmental glomerulosclerosis. Nephrol Dial Transplant 2001;16:416-7. https://doi.org/10.1093/ndt/16.2.416
  26. Maas RJ, Deegens JK, Wetzels JF. Permeability factors in idiopathic nephrotic syndrome: historical perspectives and lessons for the future. Nephrol Dial Transplant 2014;29:2207-16. https://doi.org/10.1093/ndt/gfu355
  27. Lagrue G, Xheneumont S, Branellec A, Hirbec G, Weil B. A vascular permeability factor elaborated from lymphocytes. I. Demonstration in patients with nephrotic syndrome. Biomedicine 1975;23:37-40.
  28. Savin VJ, Sharma R, Sharma M, et al. Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. N Engl J Med 1996;334:878-83. https://doi.org/10.1056/NEJM199604043341402
  29. Kachurina N, Chung CF, Benderoff E, Babayeva S, Bitzan M, Goodyer P, et al. Novel unbiased assay for circulating podocyte-toxic factors associated with recurrent focal segmental glomerulosclerosis. Am J Physiol Renal Physiol 2016;310:F1148-56. https://doi.org/10.1152/ajprenal.00349.2015
  30. Lennon R, Singh A, Welsh GI, Coward RJ, Satchell S, Ni L, et al. Hemopexin induces nephrin-dependent reorganization of the actin cytoskeleton in podocytes. J Am Soc Nephrol 2008;19:2140-9. https://doi.org/10.1681/ASN.2007080940
  31. Bakker WW, Donker RB, Timmer A, van Pampus MG, van Son WJ, Aarnoudse JG, et al. Plasma hemopexin activity in pregnancy and preeclampsia. Hypertens Pregnancy 2007;26:227-39. https://doi.org/10.1080/10641950701274896
  32. Savin VJ, Sharma R, Lovell HB, Welling DJ. Measurement of albumin reflection coefficient with isolated rat glomeruli. J Am Soc Nephrol 1992;3:1260-9. https://doi.org/10.1681/ASN.V361260
  33. Desideri S, Onions KL, Qiu Y, Ramnath RD, Butler MJ, Neal CR, et al. A novel assay provides sensitive measurement of physiologically relevant changes in albumin permeability in isolated human and rodent glomeruli. Kidney Int 2018;93:1086-97. https://doi.org/10.1016/j.kint.2017.12.003
  34. Savin VJ, McCarthy ET, Sharma R, Charba D, Sharma M. Galactose binds to focal segmental glomerulosclerosis permeability factor and inhibits its activity. Transl Res 2008;151:288-92. https://doi.org/10.1016/j.trsl.2008.04.001
  35. Wang L, Tao T, Su W, Yu H, Yu Y, Qin J. A disease model of diabetic nephropathy in a glomerulus-on-a-chip microdevice. Lab Chip 2017;17:1749-60. https://doi.org/10.1039/C7LC00134G
  36. Koyama A, Fujisaki M, Kobayashi M, Igarashi M, Narita M. A glomerular permeability factor produced by human T cell hybridomas. Kidney Int 1991;40:453-60. https://doi.org/10.1038/ki.1991.232
  37. Cheung PK, Klok PA, Baller JF, Bakker WW. Induction of experimental proteinuria In vivo following infusion of human plasma hemopexin. Kidney Int 2000;57:1512-20. https://doi.org/10.1046/j.1523-1755.2000.00996.x
  38. Sharma M, Zhou J, Gauchat JF, Sharma R, McCarthy ET, Srivastava T, et al. Janus kinase 2/signal transducer and activator of transcription 3 inhibitors attenuate the effect of cardiotrophin-like cytokine factor 1 and human focal segmental glomerulosclerosis serum on glomerular filtration barrier. Transl Res 2015;166:384-98. https://doi.org/10.1016/j.trsl.2015.03.002
  39. McCarthy ET, Sharma M, Savin VJ. Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis. Clin J Am Soc Nephrol 2010;5:2115-21. https://doi.org/10.2215/CJN.03800609
  40. Savin VJ, McCarthy ET, Sharma M. Permeability factors in nephrotic syndrome and focal segmental glomerulosclerosis. Kidney Res Clin Pract 2012;31:205-13. https://doi.org/10.1016/j.krcp.2012.10.002
  41. Wada T, Nangaku M. A circulating permeability factor in focal segmental glomerulosclerosis: the hunt continues. Clin Kidney J 2015;8:708-15. https://doi.org/10.1093/ckj/sfv090
  42. Bakker WW, van der LSM, Vos JT, Hoedemaeker PJ. The glomerular polyanion (GPA) of the rat kidney. I. Concanavalin-A activated cells affect the glomerular polyanion in vitro. Nephron 1982;31:68-74. https://doi.org/10.1159/000182620
  43. Bakker WW, van LWH, Hene RJ, Desmit EM, van der HGK, Vos JT. Loss of glomerular polyanion in vitro induced by mononuclear blood cells from patients with minimal-change nephrotic syndrome. Am J Nephrol 1986;6:107-11. https://doi.org/10.1159/000167064
  44. Boulton-Jones JM, Tulloch I, Dore B, McLay A. Changes in the glomerular capillary wall induced by lymphocyte products and serum of nephrotic patients. Clin Nephrol 1983;20:72-7.
  45. Yoshizawa N, Kusumi Y, Matsumoto K, Oshima S, Takeuchi A, Kawamura O, et al. Studies of a glomerular permeability factor in patients with minimal-change nephrotic syndrome. Nephron 1989;51:370-6. https://doi.org/10.1159/000185325
  46. Bakker WW, van Dael CM, Pierik LJ, van Wijk JA, Nauta J, Borghuis T, et al. Altered activity of plasma hemopexin in patients with minimal change disease in relapse. Pediatr Nephrol 2005;20:1410-5. https://doi.org/10.1007/s00467-005-1936-3
  47. Cheung PK, Klok PA, Bakker WW. Minimal change-like glomerular alterations induced by a human plasma factor. Nephron 1996;74:586-93. https://doi.org/10.1159/000189457
  48. Shimada M, Ishimoto T, Lee PY, Lanaspa MA, Rivard CJ, Roncal-Jimenez CA, et al. Toll-like receptor 3 ligands induce CD80 expression in human podocytes via an $NF-{\kappa}B$-dependent pathway. Nephrol Dial Transplant 2012;27:81-9. https://doi.org/10.1093/ndt/gfr271
  49. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008;322:271-5. https://doi.org/10.1126/science.1160062
  50. Mosser DM, Zhang X. Interleukin-10: new perspectives on an old cytokine. Immunol Rev 2008;226:205-18. https://doi.org/10.1111/j.1600-065X.2008.00706.x
  51. himada M, Araya C, Rivard C, Ishimoto T, Johnson RJ, Garin EH. Minimal change disease: a "two-hit" podocyte immune disorder? Pediatr Nephrol 2011;26:645-9. https://doi.org/10.1007/s00467-010-1676-x
  52. Cara-Fuentes G, Wasserfall CH, Wang H, Johnson RJ, Garin EH. Minimal change disease: a dysregulation of the podocyte CD80-CTLA-4 axis? Pediatr Nephrol 2014;29:2333-40. https://doi.org/10.1007/s00467-014-2874-8
  53. Ohl K, Eberhardt C, Spink C, Zahn K, Wagner N, Eggermann T, et al. CTLA4 polymorphisms in minimal change nephrotic syndrome in children: a case-control study. Am J Kidney Dis 2014;63:1074-5. https://doi.org/10.1053/j.ajkd.2014.01.427
  54. Spink C, Stege G, Tenbrock K, Harendza S. The CTLA-4+49GG genotype is associated with susceptibility for nephrotic kidney diseases. Nephrol Dial Transplant 2013;28:2800-5. https://doi.org/10.1093/ndt/gft381
  55. Cara-Fuentes G, Wei C, Segarra A, Ishimoto T, Rivard C, Johnson RJ, et al. CD80 and suPAR in patients with minimal change disease and focal segmental glomerulosclerosis: diagnostic and pathogenic significance. Pediatr Nephrol 2014;29:1363-71. https://doi.org/10.1007/s00467-013-2679-1
  56. Reiser J, Mundel P. Danger signaling by glomerular podocytes defines a novel function of inducible B7-1 in the pathogenesis of nephrotic syndrome. J Am Soc Nephrol 2004;15:2246-8. https://doi.org/10.1097/01.ASN.0000136312.46464.33
  57. Lai KW, Wei CL, Tan LK, Tan PH, Chiang GS, Lee CG, et al. Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats. J Am Soc Nephrol 2007;18:1476-85. https://doi.org/10.1681/ASN.2006070710
  58. Reiser J, von Gersdorff G, Loos M, Oh J, Asanuma K, Giardino L, et al. Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest 2004;113:1390-7. https://doi.org/10.1172/JCI20402
  59. Khullar B, Balyan R, Oswal N, Jain N, Sharma A, Abdin MZ, et al. Interaction of CD80 with Neph1: a potential mechanism of podocyte injury. Clin Exp Nephrol 2018;22:508-16. https://doi.org/10.1007/s10157-017-1489-3
  60. Ishimoto T, Shimada M, Gabriela G, Kosugi T, Sato W, Lee PY, et al. Toll-like receptor 3 ligand, polyIC, induces transient proteinuria and glomerular CD80, and increases urinary CD80 in mice. Nephrol Dial Transplant 2013;28:1439-46. https://doi.org/10.1093/ndt/gfs543
  61. Garin EH, Diaz LN, Mu W, Wasserfall C, Araya C, Segal M, et al. Urinary CD80 excretion increases in idiopathic minimal-change disease. J Am Soc Nephrol 2009;20:260-6.. https://doi.org/10.1681/ASN.2007080836
  62. Garin EH, Mu W, Arthur JM, Rivard CJ, Araya CE, Shimada M, et al. Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis. Kidney Int 2010;78:296-302. https://doi.org/10.1038/ki.2010.143
  63. Mishra OP, Kumar R, Narayan G, Srivastava P, Abhinay A, Prasad R. Toll-like receptor 3 (TLR-3), TLR-4 and CD80 expression in peripheral blood mononuclear cells and urinary CD80 levels in children with idiopathic nephrotic syndrome. Pediatr Nephrol 2017;32:1355-61. https://doi.org/10.1007/s00467-017-3613-8
  64. Fiorina P, Vergani A, Bassi R, Niewczas MA, Altintas MM, Pezzolesi MG. Role of podocyte B7-1 in diabetic nephropathy. J Am Soc Nephrol 2014;25:1415-29. https://doi.org/10.1681/ASN.2013050518
  65. Yu CC, Fornoni A,Weins A, Hakroush S,Maiquel D, Sageshima J, et al. Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med 2013;369:2416-23. https://doi.org/10.1056/NEJMoa1304572
  66. Ishimoto T, Cara-Fuentes G, Wang H, Shimada M, Wasserfall CH, Winter WE, et al. Serum from minimal change patients in relapse increases CD80 expression in cultured podocytes. Pediatr Nephrol 2013;28:1803-12. https://doi.org/10.1007/s00467-013-2498-4
  67. Garin EH, Reiser J, Cara-Fuentes G, Wei C, Matar D, Wang H, et al. Case series: CTLA4-IgG1 therapy in minimal change disease and focal segmental glomerulosclerosis. Pediatr Nephrol 2015;30:469-77. https://doi.org/10.1007/s00467-014-2957-6
  68. Delville M, Baye E, Durrbach A, Audard V, Kofman T, Braun L. B7-1 blockade does not improve post-transplant nephrotic syndrome caused by recurrent FSGS. J Am Soc Nephrol 2016;27:2520-7. https://doi.org/10.1681/ASN.2015091002
  69. Estreicher A, Muhlhauser J, Carpentier JL, Orci L, Vassalli JD. The receptor for urokinase type plasminogen activator polarizes expression of the protease to the leading edge of migrating monocytes and promotes degradation of enzyme inhibitor complexes. J Cell Biol 1990;111:783-92. https://doi.org/10.1083/jcb.111.2.783
  70. Nykjaer A, Moller B, Todd RF 3rd, Christensen T, Andreasen PA, Gliemann J, et al. Urokinase receptor. An activation antigen in human T lymphocytes. J Immunol 1994;152:505-16.
  71. Maas RJ, Deegens JK,Wetzels JF. Serum suPAR in patients with FSGS: trash or treasure? Pediatr Nephrol 2013;28:1041-8. https://doi.org/10.1007/s00467-013-2452-5
  72. Roldan AL, Cubellis MV, Masucci MT, Behrendt N, Lund LR, Dano K, et al. Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell surface, plasmin dependent proteolysis. EMBO J 1990;9:467-74. https://doi.org/10.1002/j.1460-2075.1990.tb08132.x
  73. Smith HW, Marshall CJ. Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol 2010;11:23-36. https://doi.org/10.1038/nrm2821
  74. Dass K, Ahmad A, Azmi AS, Sarkar SH, Sarkar FH. Evolving role of uPA/uPAR system in human cancers. Cancer Treat Rev 2008;34:122-36. https://doi.org/10.1016/j.ctrv.2007.10.005
  75. Wei C, El Hindi S, Li J, Fornoni A, Goes N, Sageshima J, et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat Med 2011;17:952-60. https://doi.org/10.1038/nm.2411
  76. Kreidberg JA, Donovan MJ, Goldstein SL, Rennke H, Shepherd K, Jones RC, et al. Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development 1996;122:3537-47. https://doi.org/10.1242/dev.122.11.3537
  77. Wei C, Moller CC, Altintas MM, Li J, Schwarz K, Zacchigna S, et al. Modification of kidney barrier function by the urokinase receptor. Nat Med 2008;14:55-63. https://doi.org/10.1038/nm1696
  78. Wei C, Trachtman H, Li J, Dong C, Friedman AL, Gassman JJ, et al. Circulating suPAR in two cohorts of primary FSGS. J Am Soc Nephrol 2012;23:2051-9. https://doi.org/10.1681/ASN.2012030302
  79. Li F, Zheng C, Zhong Y, Zeng C, Xu F, Yin R, et al. Relationship between serum soluble urokinase plasminogen activator receptor level and steroid responsiveness in FSGS. Clin J Am Soc Nephrol 2014;9:1903-11. https://doi.org/10.2215/CJN.02370314
  80. Huang J, Liu G, Zhang YM, Cui Z, Wang F, Liu XJ, et al. Plasma soluble urokinase receptor levels are increased but do not distinguish primary from secondary focal segmental glomerulosclerosis. Kidney Int 2013;84:366-72. https://doi.org/10.1038/ki.2013.55
  81. Meijers B, Maas RJ, Sprangers B, Claes K, Poesen R, Bammens B, et al. The soluble urokinase receptor is not a clinical marker for focal segmental glomerulosclerosis. Kidney Int 2014;85:636-40. https://doi.org/10.1038/ki.2013.505
  82. Wada T, Nangaku M, Maruyama S, Imai E, Shoji K, Kato S, et al. A multicenter cross-sectional study of circulating soluble urokinase receptor in Japanese patients with glomerular disease. Kidney Int 2014;85:641-8. https://doi.org/10.1038/ki.2013.544
  83. pinale JM, Mariani LH, Kapoor S, Zhang J, Weyant R, Song PX, et al. Nephrotic Syndrome Study Network () A reassessment of soluble urokinase-type plasminogen activator receptor in glomerular disease. Kidney Int 2015;87:564-74. https://doi.org/10.1038/ki.2014.346
  84. Maas RJ, Wetzels JF, Deegens JK. Serum-soluble urokinase receptor concentration in primary FSGS. Kidney Int 2012;81:1043-4.
  85. Bock ME, Price HE, Gallon L, Langman CB. Serum soluble urokinase-type plasminogen activator receptor levels and idiopathic FSGS in children: a single-center report. Clin J Am Soc Nephrol 2013;8:1304-11. https://doi.org/10.2215/CJN.07680712
  86. Sinha A, Bajpai J, Saini S, Bhatia D, Gupta A, Puraswani M, et al. Serum-soluble urokinase receptor levels do not distinguish focal segmental glomerulosclerosis from other causes of nephrotic syndrome in children. Kidney Int 2014;85:649-58. https://doi.org/10.1038/ki.2013.546
  87. Harita Y, Ishizuka K, Tanego A, Sugawara N, Chikamoto H, Akioka Y, et al. Decreased glomerular filtration as the primary factor of elevated circulating suPAR levels in focal segmental glomerulosclerosis. Pediatr Nephrol 2014;29:1553-60. https://doi.org/10.1007/s00467-014-2808-5
  88. Huang J, Liu G, Zhang YM, Cui Z, Wang F, Liu XJ, et al. Urinary soluble urokinase receptor levels are elevated and pathogenic in patients with primary focal segmental glomerulosclerosis. BMC Med 2014;12:81. https://doi.org/10.1186/1741-7015-12-81
  89. Wei C, Li J, Adair BD, Zhu K, Cai J, Merchant M, et al. uPAR isoform 2 forms a dimer and induces severe kidney disease in mice. J Clin Invest 2019 [Epub ahead of print]
  90. Alfano M, Cinque P, Giusti G, Proietti S, Nebuloni M, Danese S, et al. Full-length soluble urokinase plasminogen activator receptor down-modulates nephrin expression in podocytes. Sci Rep 2015;5:13647. https://doi.org/10.1038/srep13647
  91. Delville M, Sigdel TK, Wei C, Li J, Hsieh SC, Fornoni A, et al. A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. Sci Transl Med 2014;6:256ra136. https://doi.org/10.1126/scitranslmed.3008538
  92. Cathelin D, Placier S, Ploug M, Verpont MC, Vandermeersch S, Luque Y, et al. Administration of recombinant soluble urokinase receptor per se is not sufficient to induce podocyte alterations and proteinuria in mice. J Am Soc Nephrol 2014;25:1662-8. https://doi.org/10.1681/ASN.2013040425
  93. Segarra-Medrano A, Carnicer-Caceres C, Arbos-Via MA, Quiles-Perez MT, Agraz-Pamplona I, Ostos-Roldan E. Biological markers of nephrotic syndrome: a few steps forward in the long way. Nefrologia 2012;32:558-72.
  94. Kronbichler A, Saleem MA, Meijers B, Shin JI. Soluble urokinase receptors in focal segmental glomerulosclerosis: a review on the scientific point of view. J Immunol Res 2016:2068691.
  95. Konigshausen E, Sellin L. Circulating permeability factors in primary focal segmental glomerulosclerosis: A review of proposed candidates. Biomed Res Int 2016;2016:3765608.
  96. Savin VJ, Sharma M, Zhou J, Gennochi D, Fields T, Sharma R, et al. Renal and hematological effects of CLCF-1, a B-cell-stimulating cytokine of the IL-6 family. J Immunol Res 2015;2015:714964. https://doi.org/10.1155/2015/714964
  97. Sharma M, Zhou J, Gauchat JF, Sharma R, McCarthy ET, Srivastava T, et al. Janus kinase 2/signal transducer and activator of transcription 3 inhibitors attenuate the effect of cardiotrophin-like cytokine factor 1 and human focal segmental glomerulosclerosis serum on glomerular filtration barrier. Transl Res 2015;166:384-98. https://doi.org/10.1016/j.trsl.2015.03.002
  98. Clement LC, Mace C, Avila-Casado C, Joles JA, Kersten S, Chugh SS. Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome. Nat Med 2014;20:37-46. https://doi.org/10.1038/nm.3396
  99. Bertelli R, Bonanni A, Caridi G, Canepa A, Ghiggeri GM. Molecular and cellular mechanisms for proteinuria in minimal change disease. Front Med (Lausanne) 2018;5:170. https://doi.org/10.3389/fmed.2018.00170
  100. Chugh SS, Clement LC, Mace C. New insights into human minimal change disease: lessons from animal models. Am J Kidney Dis 2012;59:284-92. https://doi.org/10.1053/j.ajkd.2011.07.024
  101. Ma J, Chen X, Li JS, Peng L, Wei SY, Zhao SL, et al. Upregulation of podocyte-secreted angiopoietin-like-4 in diabetic nephropathy. Endocrine 2015;49:373-84. https://doi.org/10.1007/s12020-014-0486-5
  102. Clement LC, Avila-Casado C, Mace C, Soria E, Bakker WW, Kersten S, et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med 2011;17:117-22. https://doi.org/10.1038/nm.2261
  103. Cara-Fuentes G, Segarra A, Silva-Sanchez C, Wang H, Lanaspa MA, Johnson RJ, et al. Angiopoietin-like-4 and minimal change disease. PLoS One 2017;12:e0176198. https://doi.org/10.1371/journal.pone.0176198
  104. Mace C, Chugh SS. Nephrotic syndrome: components, connections, and angiopoietin-like 4-related therapeutics. J Am Soc Nephrol 2014;25:2393-8. https://doi.org/10.1681/ASN.2014030267
  105. Chugh SS, Mace C, Clement LC, Del Nogal Avila M, Marshall CB. Angiopoietin-like 4 based therapeutics for proteinuria and kidney disease. Front Pharmacol 2014;5:23. https://doi.org/10.3389/fphar.2014.00023
  106. McKenzie AN, Culpepper JA, de Waal Malefyt R, Briere F, Punnonen J, Aversa G, et al. Interleukin 13, a T-cell-derived cytokine that regulates human monocyte and B-cell function. Proc Natl Acad Sci USA 1993;90:3735-40. https://doi.org/10.1073/pnas.90.8.3735
  107. Yap HK, Cheung W, Murugasu B, Sim SK, Seah CC, Jordan SC. Th1 and Th2 cytokine mRNA profiles in childhood nephrotic syndrome: evidence for increased IL-13 mRNA expression in relapse. J Am Soc Nephrol 1999;10:529-37. https://doi.org/10.1681/ASN.V103529
  108. Cheung W, Wei CL, Seah CC, Jordan SC, Yap HK. Atopy, serum IgE, and interleukin-13 in steroid-responsive nephrotic syndrome. Pediatr Nephrol 2004;19:627-32. https://doi.org/10.1007/s00467-004-1438-8
  109. Chen SP, Cheung W, Heng CK, Jordan SC, Yap HK. Childhood nephrotic syndrome in relapse is associated with down-regulation of monocyte CD14 expression and lipopolysaccharide-induced tumour necrosis factor-alpha production. Clin Exp Immunol 2003;134:111-9. https://doi.org/10.1046/j.1365-2249.2003.02252.x
  110. Park SJ, Saleem MA, Nam JA, Ha TS, Shin JI. Effects of interleukin-13 and montelukast on the expression of zonula occludens-1 in human podocytes. Yonsei Med J 2015;56:426-32. https://doi.org/10.3349/ymj.2015.56.2.426
  111. Ha TS, Nam JA, Seong SB, Saleem MA, Park SJ, Shin JI. Montelukast improves the changes of cytoskeletal and adaptor proteins of human podocytes by interleukin-13. Inflamm Res 2017;66:793-802. https://doi.org/10.1007/s00011-017-1058-y
  112. Lee KH, Oh JY, Seong SB, Ha TS, Shin JI. Interleukin-13 increases podocyte apoptosis in cultured human podocytes. Child Kidney Dis 2018;22:22-7. https://doi.org/10.3339/jkspn.2018.22.1.22
  113. Kanai T, Shiraishi H, Yamagata T, Ito T, Odaka J, Saito T, et al. Th2 cells predominate in idiopathic steroid-sensitive nephrotic syndrome. Clin Exp Nephrol 2010;14:578-83. https://doi.org/10.1007/s10157-010-0330-z
  114. Bagnasco D, Ferrando M, Varricchi G, Passalacqua G, Canonica GW. A critical evaluation of anti-IL-13 and anti-IL-4 strategies in severe asthma. Int Arch Allergy Immunol 2016;170:122-31. https://doi.org/10.1159/000447692
  115. Matsunaga MC, Yamauchi PS. IL-4 and IL-13 inhibition in atopic dermatitis. J Drugs Dermatol 2016;15:925-9.
  116. Garin EH, Blanchard DK, Matsushima K, Djeu JY. IL-8 production by peripheral blood mononuclear cells in nephrotic patients. Kidney Int 1994;45:1311-7. https://doi.org/10.1038/ki.1994.171
  117. Cho MH, Lee HS, Choe BH, Kwon SH, Chung KY, Koo JH, et al. Interleukin-8 and tumor necrosis factor-alpha are increased in minimal change disease but do not alter albumin permeability. Am J Nephrol 2003;23:260-6. https://doi.org/10.1159/000072065
  118. Souto MF, Teixeira AL, Russo RC, Penido MG, Silveira KD, Teixeira MM, et al. Immune mediators in idiopathic nephrotic syndrome: evidence for a relation between interleukin 8 and proteinuria. Pediatr Res 2008;64:637-42. https://doi.org/10.1203/PDR.0b013e318186ddb2
  119. Garin EH, Laflam P, Chandler L. Anti-interleukin 8 antibody abolishes effects of lipoid nephrosis cytokine. Pediatr Nephrol 1998;12:381-5. https://doi.org/10.1007/s004670050470
  120. Garin EH, West L, Zheng W. Effect of interleukin-8 on glomerular sulfated compounds and albuminuria. Pediatr Nephrol 1997;11:274-9. https://doi.org/10.1007/s004670050276
  121. Quezada SA, Jarvinen LZ, Lind EF, Noelle RJ. CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol 2004;22:307-28. https://doi.org/10.1146/annurev.immunol.22.012703.104533
  122. Hassan GS, Merhi Y, Mourad W. CD40 ligand: a neo-inflammatory molecule in vascular diseases. Immunobiology 2012;217:521-32. https://doi.org/10.1016/j.imbio.2011.03.010
  123. Delville M, Sigdel TK, Wei C, Li J, Hsieh SC, Fornoni A, et al. A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. Sci Transl Med 2014;6:256ra136. https://doi.org/10.1126/scitranslmed.3008538
  124. Kairaitis L, Wang Y, Zheng L, Tay YC, wang YD, Harris C. Blockade of CD40-CD40 ligand protects against renal injury in chronic proteinuric renal disease. Kidney Int 2003;64:1265-72. https://doi.org/10.1046/j.1523-1755.2003.00223.x
  125. Doublier S, Zennaro C, Musante L, Spatola T, Candiano G, Bruschi M. Soluble CD40 ligand directly alters glomerular permeability and may act as a circulating permeability factor in FSGS. PLoS One 2017;12:e0188045. https://doi.org/10.1371/journal.pone.0188045
  126. Lee VW, Qin X, Wang Y, Zheng G, Wang Y, Wang Y. The CD40-CD154 co-stimulation pathway mediates innate immune injury in adriamycin nephrosis. Nephrol Dial Transplant 2010;25:717-30. https://doi.org/10.1093/ndt/gfp569
  127. Kairaitis L, Wang Y, Zheng L, Tay YC, Wang Y, Harris DC. Blockade of CD40-CD40 ligand protects against renal injury in chronic proteinuric renal disease. Kidney Int 2003;64:1265-72. https://doi.org/10.1046/j.1523-1755.2003.00223.x
  128. van den Hoven MJ, Rops AL, Vlodavsky I, Levidiotis V, Berden JH, van der Vlag J. Heparanase in glomerular diseases. Kidney Int 2007;72:543-8. https://doi.org/10.1038/sj.ki.5002337
  129. Holt RC, Webb NJ, Ralph S, Davies J, Short CD, Brenchley PE. Heparanase activity is dysregulated in children with steroid-sensitive nephrotic syndrome. Kidney Int 2005;67:122-9. https://doi.org/10.1111/j.1523-1755.2005.00062.x
  130. Katz A, Van-Dijk DJ, Aingorn H, Erman A, Davies M, Darmon D, et al. Involvement of human heparanase in the pathogenesis of diabetic nephropathy. Isr Med Assoc J 2002;4:996-1002.
  131. van den Hoven MJ, Rops AL, Bakker MA, Aten J, Rutjes N, Roestenberg P, et al. Increased expression of heparanase in overt diabetic nephropathy. Kidney Int 2006;70:2100-8. https://doi.org/10.1038/sj.ki.5001985
  132. Szymczak M, Kuzniar J, Klinger M. The role of heparanase in diseases of the glomeruli. Arch Immunol Ther Exp (Warsz) 2010;58:45-56. https://doi.org/10.1007/s00005-009-0061-6
  133. Levidiotis V, Freeman C, Tikellis C, Cooper ME, Power DA. Heparanase inhibition reduces proteinuria in a model of accelerated anti-glomerular basement membrane antibody disease. Nephrology (Carlton) 2005;10:167-73. https://doi.org/10.1111/j.1440-1797.2005.00388.x
  134. Raats CJ, Luca ME, Bakker MA, Van Der Wal A, Heeringa P, Van Goor H, et al. Reduction in glomerular heparin sulfate correlates with complement deposition and albuminuria in active Heymann nephritis. J Am Soc Nephrol 1999;10:1689-99. https://doi.org/10.1681/ASN.V1081689
  135. Levidiotis V, Freeman C, Tikellis C, Cooper ME, Power DA. Heparanase is involved in the pathogenesis of proteinuria as a result of glomerulonephritis. J Am Soc Nephrol 2004;15:68-78. https://doi.org/10.1097/01.ASN.0000103229.25389.40
  136. Levidiotis V, Freeman C, Punler M, Martinello P, Creese B, Ferro V, et al. A synthetic heparanase inhibitor reduces proteinuria in passive Heymann nephritis. J Am Soc Nephrol 2004;15:2882-92. https://doi.org/10.1097/01.ASN.0000142426.55612.6D
  137. Levidiotis V, Kanellis J, Ierino FL, Power DA. Increased expression of heparanase in puromycin aminonucleoside nephrosis. Kidney Int 2001;60:1287-96. https://doi.org/10.1046/j.1523-1755.2001.00934.x
  138. Kramer A, van den Hoven M, Rops A, Wijnhoven T, van den Heuvel L, Lensen J, et al. Induction of glomerular heparanase expression in rats with adriamycin nephropathy is regulated by reactive oxygen species and the renin-angiotensin system. J Am Soc Nephrol 2006;17:2513-20. https://doi.org/10.1681/ASN.2006020184
  139. van den Hoven MJ, Wijnhoven TJ, Li JP, Zcharia E, Dijkman HB, Wismans RG, et al. Reduction of anionic sites in the glomerular basement membrane by heparanase does not lead to proteinuria. Kidney Int 2008;73:278-87. https://doi.org/10.1038/sj.ki.5002706
  140. Assady S, Alter J, Axelman E, Zohar Y, Sabo E, Litvak M, et al. Nephroprotective effect of heparanase in experimental nephrotic syndrome. PLoS One 2015;10:e0119610. https://doi.org/10.1371/journal.pone.0119610