Fig. 1. Architecture of the neural network
Fig. 2. Trading interval for buying leverage and inverse ETFs
Fig. 3. ETF trades using PNN1 in evaluation
Fig. 4. ETF trades using PNN2 in evaluation
Fig. 5. ETF trades using PNN3 in evaluation
Table 1. Input variables of the neural network model
Table 2. Output variables of the neural network model
Table 3. The correlation coefficients of KOSPI, KOSPI200 and F-KOSPI200
Table 4. Neural network parameters for the KOSPI prediction models
Table 5. KOSPI prediction errors
Table 6. Trade performance of the proposed models
Table 7. Trade profit of the proposed models
참고문헌
- W. Huang, Y. Nakamori & S. Y. Wang. (2005). Forecasting Stock Market Movement Direction with Support Vector Machine, Computers & Operations Research, 32(10), 2513-2522. https://doi.org/10.1016/j.cor.2004.03.016
- R. C. Cavalcante, R. C. Brasileiro, V. L. F. Souza, J. P. Nobrega & A. L. I. Oliveira. (2016). Computational Intelligence and Financial Markets: A Survey and Future Directions," Expert Systems with Applications, 55, 194-211. https://doi.org/10.1016/j.eswa.2016.02.006
- H. Amin, H. M. Moein & E. Morteza. (2016). Stock market index prediction using artificial neural network, Journal of Economics, Finance and Administrative Science. 10.1016/j.jefas.2016.07.002.
- Heesoo Hwang. (2018). Daily Stock Price Forecasting Using Deep Neural Network Model, Journal of the Korea Convergence Society, 9(6), 39-44. https://doi.org/10.15207/JKCS.2018.9.6.039
- Heesoo Hwang. (2019). ETF Trading Based on Daily KOSPI Forecasting Using Neural Networks, Journal of the Korea Convergence Society, 10(1), 7-12. https://doi.org/10.15207/JKCS.2019.10.1.007
- L. D. Persio & O. Honcha. (2017). Recurrent Neural Networks Approach to The Financial Forecast of Google Assets, Int. J. of Mathetics and Computers in Simulation, 11, 7-13.
- X. Ding X, Y. Zhang, T. Liu & J. Duan. (2015). Deep Learning for Event-driven Stock Prediction, Proc. of the 24th Int. Joint Conf. on Artificial Intelligence, 2327-2333.
- Qiu M, Song Y (2016) Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model. https://doi.org/10.1371/journal.pone.0155133
- T. Chandima & M. Sidney, M.. Musa & H. Cameron. (2007). Predicting stock market index trading signals using neural networks. Pro. of the 14th Annual Global Finance Conference (GFC'07), 171-179.
- Rasika Yatigammana, et. al, (2018). Modelling and Forecasting Stock Price Movements with Serially Dependent Determinants, Risks, 6(52), doi:10.3390/risks6020052
- Y. Jiao & J. Jakubowicz. (2017). Predicting Stock Movement Direction with Machine Learning: An Extensive Study on S&P 500 Stocks, DOI: 10.1109/BigData.2017.8258518
- Seunghee Koh. (2016). A Converging Approach on Investment Strategies, Past Financial Information, and Investors' Behavioral Bias in the Korean Stock Market, Journal of the Korea Convergence Society, 7(6), 205-212. https://doi.org/10.15207/JKCS.2016.7.6.205
- L. J. Kyung-Soo & M. Boris. (2017). Forecasting ETFs with Machine Learning Algorithms. http://dx.doi.org/10.2139/ssrn.2899520.
- K. H. Lee & G. S. Jo. (1999). Expert System for Predicting Stock Market Timing Using A Candlestick Chart, Expert System With Applications, 16, 357-364. https://doi.org/10.1016/S0957-4174(99)00011-1
- L. C. H. Leon, A. Liu & W. S. Chen. (2006). Pattern Discovery of Fuzzy Time Series for Financial Prediction, IEEE Trans. Knowledge and Data Engineering, 18(5), 613-625. https://doi.org/10.1109/TKDE.2006.80
- M. F. Moller. (1993). A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning, Neural Networks, 6, 525-533. https://doi.org/10.1016/S0893-6080(05)80056-5