References
- Abaqus User Manual (2013), Hibbitt, Karlsson and Sorensen, Inc.
- Alavi, S.H. and Eipakchi, H.R. (2018), "An analytical approach for free vibrations analysis of viscoelastic circular and annular plates using FSDT", Mech. Adv. Mater. Struct., 1-15.
- Alipour, M. and Shariyat, M. (2014), "Analytical stress analysis of annular FGM sandwich plates with non-uniform shear and normal tractions, employing a zigzag-elasticity plate theory", Aerosp. Sci. Technol., 32(1), 235-259. https://doi.org/10.1016/j.ast.2013.10.007
- Ansari, R., Gholami, R., Shojaei, M.F., Mohammadi, V. and Sahmani, S. (2014), "Bending, buckling and free vibration analysis of size-dependent functionally graded circular/annular microplates based on the modified strain gradient elasticity theory", Eur. J. Mech. A-Sol., 49, 251-267.
- Barrett, R. (2012), "On the relative position of twist and shear centers in the orthotropic and fiberwise homogeneous Saint-Venant beam theory", Int. J. Sol. Struct., 49(21), 3038-3046. https://doi.org/10.1016/j.ijsolstr.2012.06.003
- Barretta, R. and Elast, J. (2013), "On cesaro-volterra method in orthotropic saint-venant neam", J. Elast., 112(2), 233-253. https://doi.org/10.1007/s10659-013-9432-7
- Barretta, R., Feo, L., Luciano, R., Sciarra, F. and Penna, R. (2016), "Functionally graded Timoshenko nanobeams: A novel nonlocal gradient formulation", Compo.. Part B, 100, 208-219. https://doi.org/10.1016/j.compositesb.2016.05.052
- Brinson, H.F. and Brinson, L.C. (2008), Polymer Engineering Science and Viscoelasticity; An Introduction, Springer Science Business Media LLC, U.S.A.
- Dai, H.L., Dai, T. and Cheng, S.K. (2015), "Transient response analysis for a circular sandwich plate with an FG central disk", J. Mech., 31(4), 417-426. https://doi.org/10.1017/jmech.2015.7
- Faghidian, S.A. (2017), "Unified formulations of the shear coefficients in Timoshenko beam theory", J. Eng. Mech., 143(9), 06017013. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001297
- Khadem-Moshir, S., Eipakchi, H.R. and Sohani, F. (2017), "Free vibration behavior of viscoelastic annular plates using first order shear deformation theory", Struct. Eng. Mech., 62(5), 607-618. https://doi.org/10.12989/sem.2017.62.5.607
- Liang, X., Kou, H., Wang, L., Palmer, A.C., Wang, Z. and Liu, G. (2015), "Three-dimensional transient analysis of functionally graded material annular sector plate under various boundary conditions", Compos. Struct., 132, 584-596. https://doi.org/10.1016/j.compstruct.2015.05.066
- Liang, X., Wang, Z., Wang, L. and Liu, G. (2014), "Semianalytical solution for three-dimensional transient response of functionally graded annular plate on a two parameter viscoelastic foundation", J. Sound Vibr., 333(12), 2649-2663. https://doi.org/10.1016/j.jsv.2014.01.021
- Liang, X., Wang, Z., Wang, L., Izzuddin, B. and Liu, G. (2015), "A semi-analytical method to evaluate the dynamic response of functionally graded plates subjected to underwater shock", J. Sound J. Sound Vibr., 336, 257-274. https://doi.org/10.1016/j.jsv.2014.10.013
- Liang, X., Wu, Z., Wang, L. and Liu, G. (2015), "Semianalytical three-dimensional solutions for the transient response of functionally graded material rectangular plates", J. Eng. Mech., 141(9), 1-17. https://doi.org/10.3901/JME.2015.05.001
- Malekzadeh, P., Setoodeh, R. and Shojaee, M. (2018), "Vibration of FG-GPLs eccentric annular plates embedded in piezoelectric layers using a transformed differential quadrature method", Comput. Meth. Appl. M., 340, 451-479. https://doi.org/10.1016/j.cma.2018.06.006
- Nayfeh, A.H. (1993), Introduction to Perturbation Techniques, John Wiley & Sons, New York, U.S.A.
- Pawlus, D. (2016), "Dynamic response control of three-layered annular plate due to various parameters of electrorheological core", Arch. Mech. Eng., 63(1), 74-90. https://doi.org/10.1515/meceng-2016-0004
- Rad, B.A. and Shariyat, M. (2016), "Thermo-magneto-elasticity analysis of variable thickness annular FGM plates with asymmetric shear and normal loads and non-uniform elastic foundations", Arch. Civil Mech. Eng., 16(3), 448-466. https://doi.org/10.1016/j.acme.2016.02.006
- Romano, G., Barretta, A. and Barretta, R. (2012), "On torsion and shear of saint-venant beams", Eur. J. Mech. A-Sol., 35, 47-60.
- Sadd, M.H. (2009), Elasticity Theory, Applications and Numeric, Elsevier Inc., U.S.A.
- Salehi, M. and Aghaei, H. (2005), "Dynamic relaxation large deflection analysis of non-axisymmetric circular viscoelastic plates", Compos. Struct., 83(23-24), 1878-1890. https://doi.org/10.1016/j.compstruc.2005.02.023
- Shariyat, M. and Alipour, M.M. (2013), "A power series solution for vibration and complex modal stress analyses of variable thickness viscoelastic two-directional FGM circular plates on elastic foundations", Appl. Math. Model., 37(5), 3063-3076. https://doi.org/10.1016/j.apm.2012.07.037
- Srividhya, S., Raghu, P., Rajagopal, A. and Reddy, J.N. (2018), "Nonlocal nonlinear analysis of functionally graded plates using third-order shear deformation theory", Int. J. Eng. Sci., 125, 1-22. https://doi.org/10.1016/j.ijengsci.2017.12.006
- Wang, H.J. and Chen, L.W. (2002), "Vibration and damping analysis of a three-layered composite annular plate with a viscoelastic mid-layer", Compos. Struct., 58(4), 563-570. https://doi.org/10.1016/S0263-8223(02)00165-4