Fig. 1. Plot locations and terrain type.
Fig. 2. Airborne sporangia capture using sticky glass traps facing N, S, E and W. Two supports (A and B) were placed in each plot (at different altitudes if possible), and the traps they carried at two heights (H1 and H2 m) above the soil.
Fig. 3. Micrographs of airborne sporangia (magnification 40×). Plot D had the highest concentration, and Plot A the lowest.
Fig. 4. PCA performed for each plot separately, taking into account primary (oil spot) and secondary infection (mosaic spot).
Table 1. Plot locations, grape variety, altitude, years of plantation (YP), training systems, density of vines, distance between rows (dr), distance between grapevines in a row (dv), total no plants (Np), plot surface area, sampling dates, and sample size (SS)
Table 4. Mean disease incidence (%) under field conditions observed on leaves and clusters
Table 2. Monthly temperature (℃), rainfall (L/㎡) and relative humidity (%) at the plots
Table 3. Airborne sporangia concentrations (mean and standard deviation)
Table 5. Allele diversity and possible fungal genotypes
Table 6. Number of alleles and genotypes, observed heterozygosity, gene diversity and polymorphism information content (PIC) of the seven P. viticola SSR loci
Table 7. Summary of population genetics indices
Table 8. Pairwise population matrix for Nei genetic distances (pi = primary infection; si = secondary infection)
참고문헌
- Abu, Z. 1878. Agriculture book. Scientific Literature Library, Sevill, Spain. 512 pp (in Spanish).
- Boso, S., Santiago, J. L. and Martinez, M. C. 2005. A method to evaluate downy mildew resistance in grapevine. Agron. Sustain. Dev. 25:163-165. https://doi.org/10.1051/agro:2004062
- Boso, S., Alonso-Villaverde, V., Santiago, J. L., Gago, P. and Martinez, M. C. 2011. Susceptibility of 44 grapevine (Vitis vinifera L.) varieties to downy mildew in the field. Aust. J. Grape Wine Res. 17:394-400. https://doi.org/10.1111/j.1755-0238.2011.00157.x
- Chen, W. J., Delmotte, F., Richard-Cervera, S., Douence, L., Greif, C. and Corio-Costet, M. F. 2007. At least two origins of fungicide resistance in grapevine downy mildew populations. Appl. Environ. Microbiol. 73:5162-5172. https://doi.org/10.1128/AEM.00507-07
- Delmas, C. E., Fabre, F., Jolivet, J., Mazet, I. D., Richard-Cervera, S., Deliere, L. and Delmotte, F. 2016. Adaptation of a plant pathogen to partial host resistance: selection for greater aggressiveness in grapevine downy mildew. Evol. Appl. 9:709-725. https://doi.org/10.1111/eva.12368
- Delmotte, F., Chen, W. J., Richard-Cervera, S., Greif, C., Papura, D., Giresse, X., Mondor-Gemson, G. and Corio-Costet, M.-F. 2006. Microsatellite DNA markers for Plasmopara viticola, the causal agent of downy mildew of grapes. Mol. Ecol. Notes 6:379-381. https://doi.org/10.1111/j.1471-8286.2005.01240.x
- Delmotte, F., Machefer, V., Giresse, X., Richard-Cervera, S., Latorse, M. P. and Beffa, R. 2011. Characterization of Single-Nucleotide-Polymorphism markers for Plasmopara viticola, the causal agent of grapevine downy mildew. Appl. Environ. Microbiol. 77:7861-7863. https://doi.org/10.1128/AEM.05782-11
- Delmotte, F., Mestre, P., Schneider, C., Kassemeyer, H. H., Kozma, P., Richard-Cervera, S., Rouxel, M. and Deliere, L. 2014. Rapid and multiregional adaptation to host partial resistance in a plant pathogenic oomycete: evidence from European populations of Plasmopara viticola, the causal agent of grapevine downy mildew. Infect. Genet. Evol. 27:500-508. https://doi.org/10.1016/j.meegid.2013.10.017
- Delye, C. and Corio-Costet, M.-F. 1998. Origin of primary infections of grape by Uncinula necator. RAPD analysis discriminates two biotypes. Mycol. Res. 102:283-288. https://doi.org/10.1017/S0953756297004632
- Evans, K. J., Whisson, D. L., Stummer, B. E. and Scott, E. S. 1997. DNA markers identify variation in Australian populations of Uncinula necator. Mycol. Res. 101:923-932. https://doi.org/10.1017/S0953756297003596
- Fontaine, M. C., Austerlitz, F., Giraud, T., Labbe, F., Papura, D., Richard-Cervera, S. and Delmotte, F. 2013. Genetic signature of a range expansion and leap-frog event after the recent invasion of Europe by the grapevine downy mildew pathogen Plasmopara viticola. Mol. Ecol. 22:2771-2786. https://doi.org/10.1111/mec.12293
- Gessler, C., Pertot, I. and Perazzolli, M. 2011. Plasmopara viticola: a review of knowledge on downy mildew of grapevine and effective disease management. Phytopathol. Mediterr. 50:3-44.
- Gobbin, D., Pertot, I. and Gessler, C. 2003a. Genetic structure of a Plasmopara viticola population in an isolated Italian mountain vineyard. J. Phytopathol. 151:636-646. https://doi.org/10.1046/j.0931-1785.2003.00779.x
- Gobbin, D., Pertot, I. and Gessler, C. 2003b. Identification of microsatellite markers for Plasmopara viticola and establishment of high throughput method for SSR analysis. Eur. J. Plant Pathol. 109:153-164. https://doi.org/10.1023/A:1022565405974
- Gobbin, D., Jermini, M., Loskill, B., Pertot, I., Raynal, M. and Gessler, C. 2005. Importance of secondary inoculum of Plasmopara viticola to epidemics of grapevine downy mildew. Plant Pathol. 54:522-534. https://doi.org/10.1111/j.1365-3059.2005.01208.x
- Gobbin, D., Rumbou, A., Linde, C. C. and Gessler, C. 2006. Population genetic structure of Plasmopara viticola after 125 years of colonization in European vineyards. Mol. Plant Pathol. 7:519-531. https://doi.org/10.1111/j.1364-3703.2006.00357.x
- Gobbin, D., Bleyer, G., Keil, S., Kassemeyer, H.-H. and Gessler, C. 2007. Evidence for sporangial dispersal leading to a single infection event and a sudden high incidence of grapevine downy mildew. Plant Pathol. 56:843-847. https://doi.org/10.1111/j.1365-3059.2007.01651.x
- Hug, F. 2005. Genetic structure and epidemiology of Plasmopara viticola populations from Australian grape growing regions. Diploma's thesis. ETH Zurich, Switzerland.
- Jermini, M., Gobbin, D., Blaise, P. and Gessler, C. 2003. Influence of the overwintering methods on the germination dynamic of downy mildew (Plasmopara viticola) oospores. IOBC-WPRS Bull. 26:37-42.
- Jermini, M., Gobbin, D., Matasci, C. and Gessler, C. 2009. Genetic analysis of the downy mildew of grapevine (Plasmopara viticola) populations. Revue Suisse Vitic. Arboric. Hortic. 41: 213-218 (in French).
- Kast, W. K., Stark-Urnau, M., Seidel, M. and Gemmrich, A. R. 2001. Inter-isolate variation of virulence of Plasmopara viticola on resistant vine varieties. Bull. OILB/SROP 24:45-49.
- Kennelly, M. M., Eugster, C., Gadoury, D. M., Smart, C. D., Seem, R. C., Gobbin, D. and Gessler, C. 2004. Contributions of oospore inoculum to epidemics of grapevine downy mildew (Plasmopara viticola). Phytopathology 94:S50.
- Kennelly, M. M., Gadoury, D. M., Wilcox, W. F., Magarey, P. A. and Seem, R. C. 2007. Primary infection, lesion productivity, and survival of sporangia in the grapevine downy mildew pathogen Plasmopara viticola. Phytopathology 97:512-522. https://doi.org/10.1094/PHYTO-97-4-0512
- Koopman, T., Linde, C. C., Fourie, P. H. and McLeod, A. 2007. Population genetic structure of Plasmopara viticola in the Western Cape Province of South Africa. Mol. Plant Pathol. 8:723-736. https://doi.org/10.1111/j.1364-3703.2007.00429.x
- Li, X., Yin, L., Ma, L., Zhang, Y., An, Y. and Lu, J. 2016. Pathogenicity variation and population genetic structure of Plasmopara viticola in China. J. Phytopathol. 164:863-873. https://doi.org/10.1111/jph.12505
- Liu, K. and Muse, S. V. 2005. PowerMarker: Integrated Analysis Environment for Genetic Marker Data. Bioinformatics 21:2128-2129. https://doi.org/10.1093/bioinformatics/bti282
- Matasci, C., Gobbin, D., Scharer, H.-J., Tamm, L. and Gessler, C. 2008. Selection for fungicide resistance throughout a growing season in populations of Plasmopara viticola. Eur. J. Plant Pathol. 120:79-83. https://doi.org/10.1007/s10658-007-9190-0
- Miazzi, M., Hajjeh, H. R. and Faretra, F. 2003. Observations on the population biology of the grape powdery mildew fungus Uncinula necator. J. Plant Pathol. 85:123-129.
- Peakall, R. and Smouse, P. E. 2006. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6:288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
- Peakall, R. and Smouse, P. E. 2012. GENALEX 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537-2539. https://doi.org/10.1093/bioinformatics/bts460
- Peros, J. P., Troulet, C., Guerriero, M., Michel-Romiti, C. and Notteghem, J. L. 2005. Genetic variation and population structure of the grape powdery mildew fungus, Erysiphe necator, in Southern France. Eur. J. Plant Pathol. 113:407-416. https://doi.org/10.1007/s10658-005-4563-8
- Peressotti, E., Wiedemann-Merdinoglu, S., Delmotte, F., Bellin, D., Di Gaspero, G., Testolin, R., Merdinoglu, D. and Mestre, P. 2010. Breakdown of resistance to grapevine downy mildew upon limited deployment of a resistant variety. BMC Plant Biol. 10:147. https://doi.org/10.1186/1471-2229-10-147
- Pertot, I. and Zulini, L. 2003. Studies on Plasmopara viticola oospores germination in Trentino, Italy. Integrated protection and production in viticulture. IOBC-WPRS Bull. 26:43-46.
- Rouxel, M., Papura, D., Nogueira, M., Machefer, V., Dezette, D., Richard-Cervera, S., Carrere, S., Mestre, P. and Delmotte, F. 2012. Microsatellite markers for characterization of native and introduced populations of Plasmopara viticola, the causal agent of grapevine downy mildew. Appl. Environ. Microbiol. 78:6337-6340. https://doi.org/10.1128/AEM.01255-12
- Rumbou, A. and Gessler, C. 2004. Genetic dissection of Plasmopara viticola population from a Greek vineyard in two consecutive years. Eur. J. Plant Pathol. 110:379-392. https://doi.org/10.1023/B:EJPP.0000021061.38154.22
- Rumbou, A. and Gessler, C. 2006. Particular structure of Plasmopara viticola populations evolved under Greek island conditions. Phytopathology 96:501-509. https://doi.org/10.1094/PHYTO-96-0501
- Scherer, E. and Gisi, U. 2006. Characterization of genotype and mating type in European isolates of Plasmopara viticola. J. Phytopathol. 154:489-495. https://doi.org/10.1111/j.1439-0434.2006.01136.x
- Stark-Urnau, M., Seidel, M., Kast, V. K. and Gemmrich, A. R. 2000. Studies on the genetic diversity of primary and secondary infections of Plasmopara viticola using RAPD/PCR. Vitis 39:163-166.
- Stummer, B. E., Zanker, T., Scott, E. S. and Whisson, D. L. 2000. Genetic diversity in populations of Uncinula necator: comparison of RFLP- and PCR-based approaches. Mycol. Res. 104:44-52. https://doi.org/10.1017/S0953756299001070
- Valsesia, G., Gobbin, D., Patocchi, A., Vecchione, A., Pertot, I. and Gessler, C. 2005. Development of a high-throughput method for quantification of Plasmopara viticola DNA in grapevine leaves by means of quantitative real-time polymerase chain reaction. Phytopathology 95:672-678. https://doi.org/10.1094/PHYTO-95-0672
- Yin, L., Zhang, Y., Hao, Y. and Lu, J. 2014. Genetic diversity and population structure of Plasmopara viticola in China. Eur. J. Plant Pathol. 140:365-376. https://doi.org/10.1007/s10658-014-0470-1
- Yin, L., An, Y., Qu, J., Li, X., Zhang, Y., Dry, I., Wu, H. and Lu, J. 2017. Genome sequence of Plasmopara viticola and insight into the pathogenic mechanism. Sci. Rep. 7:46553. https://doi.org/10.1038/srep46553
- Zheng, Y., Xu, S., Liu, J., Zhao, Y. and Liu, J. 2017. Genetic diversity and population structure of Chinese natural bermudagrass [Cynodon dactylon (L.) Pers.] germplasm based on SRAP markers. PLoS One 12:e0177508. https://doi.org/10.1371/journal.pone.0177508