References
- Riedel G, Platt P, Micheau J. Glutamate receptor function in learning and memory. Behav Brain Res 2003;140:1-47. https://doi.org/10.1016/S0166-4328(02)00272-3
- Reynolds IJ, Hastings TG. Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J Neurosci 1995;15:3318-27. https://doi.org/10.1523/JNEUROSCI.15-05-03318.1995
- Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1988;1:623-34. https://doi.org/10.1016/0896-6273(88)90162-6
- Dong XX, Wang Y, Qin ZH. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 2009;30:379-87. https://doi.org/10.1038/aps.2009.24
- Coyle TJ, Puttfarcken P. Oxidative stress, glutamate, and neurodegerative disorders. Science 1993;262:689-95. https://doi.org/10.1126/science.7901908
- Niikura T, Tajima H, Kita Y. Curr Neuropharmacol 2006;4:139-47. https://doi.org/10.2174/157015906776359577
- Cookson MR. Mol Neurodegener 2009;4:9. https://doi.org/10.1186/1750-1326-4-9
- Cowan CM, Raymond LA. Curr Top Dev Biol 2006;75:25-71. https://doi.org/10.1016/S0070-2153(06)75002-5
- Murphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT. Glutamate toxicity in a neuronal cell line involves inhibition of cysteine transport leading to oxidative stress. Neuron 1989;2:1547-58. https://doi.org/10.1016/0896-6273(89)90043-3
- Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1988;1:623-34. https://doi.org/10.1016/0896-6273(88)90162-6
- Tan S, Schubert D, Maher P. Oxytosis: a novel form of programmed cell death. Curr Top Med Chem 2001;1:497-506. https://doi.org/10.2174/1568026013394741
-
Kang Y, Tiziani S, Park G, Kaul M, Paternostro G. Cellular protection using Flt3 and
$PI3K{\alpha}$ inhibitors demonstrates multiple mechanisms of oxidative glutamate toxicity. Nat Comm 2014;5:1-12. - Yang E-J, Song K-S. Polyozellin, a key constituent of the edible mushroom Polyozellus multiplex, attenuates glutamate-induced mouse hippocampal neuronal HT22 cell death. Food Funct 2015;6:3678-86. https://doi.org/10.1039/C5FO00636H
- Tobaben S, Grohm J, Seiler A, Conrad M, Plesnila N, Culmsee C. Bid-mediated mitochondrial damage is a key mechanism in glutamate-induced oxidative stress and AIF-dependent cell death in immortalized HT-22 hippocampal neurons. Cell Death Differ 2011;18:282-92. https://doi.org/10.1038/cdd.2010.92
- Culmsee C, Plesnila N. Targeting Bid to prevent programmed cell death in neurons. Biochem Soc Trans 2006;34:1334-40. https://doi.org/10.1042/BST0341334
- Xu X, Chua CC, Kong J, Kostrzewa RM, Kumaraguru U, Hamdy RC, Chua BH. Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cells. J Neurochem 2007;103:2004-14. https://doi.org/10.1111/j.1471-4159.2007.04884.x
- Landshamer S, Hoehn M, Barth N, Duvezin-Caubet S, Schwake G, Tobaben S, Kazhdan I, Becattini B, Zahler S, Vollmar A, et al. Bid-induced release of AIF from mitochondria causes immediate neuronal cell death. Cell Death Differ 2008;15:1553-63. https://doi.org/10.1038/cdd.2008.78
- Susin SA1, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999;397:441-6. https://doi.org/10.1038/17135
- Daugas E1, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N, Prevost MC, Leber B, Andrews D, Penninger J, et al. Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J 2000;14:729-39. https://doi.org/10.1096/fasebj.14.5.729
- Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012;24:981-90. https://doi.org/10.1016/j.cellsig.2012.01.008
- Choi JH, Choi AY, Yoon H, Choe W, Yoon K-S, Ha J, Yeo E-J, Kang I. Baicalein protects HT22 murine hippocampal neuronal cells against endoplasmic reticulum stress-induced apoptosis through inhibition of reactive oxygen species production and CHOP induction. Exp Mol Med 2010;42:811-22. https://doi.org/10.3858/emm.2010.42.12.084
- Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001;22:153-83. https://doi.org/10.1210/er.22.2.153
- Tibbles LA, Woodgett JR. The stress-activated protein kinase pathways. Cell Mol Lif Sci 1999;55:1230-54. https://doi.org/10.1007/s000180050369
- Park EH, Kim YJ, Yamabe N, Park SH, Kim HK, Jang HJ, Kim JH, Cheon GJ, Ham J, Kang KS. Stereospecific anticancer effects of ginsenoside Rg3 epimers isolated from heat-processed American ginseng on human gastric cancer cell. J Ginseng Res 2014;38:22-7. https://doi.org/10.1016/j.jgr.2013.11.007
- Park JY, Choi P, Kim HK, Kang KS, Ham J. Increase in apoptotic effect of Panax ginseng by microwave processing in human prostate cancer cells: in vitro and in vivo studies. J Ginseng Res 2016;40:62-7. https://doi.org/10.1016/j.jgr.2015.04.007
- Jang HJ, Han IH, Kim YJ, Yamabe N, Lee D, Hwang GS, Oh M, Choi KC, Kim SN, Ham J, et al. Anticarcinogenic effects of products of heat-processed ginsenoside Re, a major constituent of ginseng berry, on human gastric cancer cells. J Agric Food Chem 2014;62:2830-6. https://doi.org/10.1021/jf5000776
- Dong X, Zheng L, Lu S, Yang Y. Neuroprotective effects of pretreatment of ginsenoside Rb1 on severe cerebral ischemia-induced injuries in aged mice: involvement of anti-oxidant signaling. Geriatr Gerontol Int 2017;17:338-45. https://doi.org/10.1111/ggi.12699
- Gao XQ, Yang CX, Chen GJ, Wang GY, Chen B, Tan SK, Liu J, Yuan QL. Ginsenoside Rb1 regulates the expressions of brain-derived neurotrophic factor and caspase-3 and induces neurogenesis in rats with experimental cerebral ischemia. J Ethnopharmacol 2010;132:393-9. https://doi.org/10.1016/j.jep.2010.07.033
- Wang L, Zhao H, Zhai ZZ, Qu LX. Protective effect and mechanism of ginsenoside Rg1 in cerebral ischaemia-reperfusion injury in mice. Biomed Pharmacother 2018;99:876-82. https://doi.org/10.1016/j.biopha.2018.01.136
- Zhang G, Xia F, Zhang Y, Zhang X, Cao Y, Wang L, Liu X, Zhao G, Shi M. Ginsenoside Rd is efficacious against acute ischemic stroke by suppressing microglial proteasome-mediated inflammation. Mol Neurobiol 2016;53: 2529-40. https://doi.org/10.1007/s12035-015-9261-8
- Kim JH, Cho SY, Lee JH, Jeong SM, Yoon IS, Lee BH, Lee JH, Pyo MK, Lee SM, Chung JM, et al. Neuroprotective effects of ginsenoside Rg3 against homocysteine-induced excitotoxicity in rat hippocampus. Brain Res 2007;1136:190-9. https://doi.org/10.1016/j.brainres.2006.12.047
- Tian J, Fu F, Geng M, Jiang Y, Yang J, Jiang W, Wang C, Liu K. Neuroprotective effect of 20(S)-ginsenoside Rg3 on cerebral ischemia in rats. Neurosci Lett 2005;374:92-7. https://doi.org/10.1016/j.neulet.2004.10.030
- Tan S, Wood M, Maher P. Oxidative stress induces a form of programmed cell death with characteristics of both apoptosis and necrosis in neuronal cells. J Neurochem 1998;71:95-105. https://doi.org/10.1046/j.1471-4159.1998.71010095.x
- Wen T-C, Yoshimura H, Matsuda S, Lim J-H, Sakanaka M. Ginseng root prevents learning disability and neuronal loss in gerbils with 5-minute forebrain ischemia. Acta Neuropathol 1996;91:15-22. https://doi.org/10.1007/s004010050387
- Lee JC, Park JH, Ahn JH, Kim IH, Cho JH, Choi JH, Yoo KY, Lee CH, Hwang IK, Cho JH, et al. New GABAergic neurogenesis in the hippocampal CA1 region of a gerbil mdel of long-term survival after transient cerebral ischemic injury. Brain Pathol 2016;26:581-92. https://doi.org/10.1111/bpa.12334
- Schmued LC, Hopkins KJ, Fluoro-Jade B. A high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 2000;874:123-30. https://doi.org/10.1016/S0006-8993(00)02513-0
- Park JH, Joo HS, Yoo KY, Shin BN, Kim IH, Lee CH, Choi JH, Byun K, Lee B, Lim SS, et al. Extract from Terminalia chebula seeds protect against experimental ischemic neuronal damage via maintaining SODs and BDNF levels. Neurochem Res 2011;36:2043-50. https://doi.org/10.1007/s11064-011-0528-9
- Park JH, Shin BN, Chen BH, Kim IH, Ahn JH, Cho JH, Tae HJ, Lee JC, Lee CH, Kim YM, et al. Neuroprotection and reduced gliosis by atomoxetine pretreatment in a gerbil model of transient cerebral ischemia. J Neurol Sci 2015;359:373-80. https://doi.org/10.1016/j.jns.2015.11.028
- Kim YC, Kim SR, Markelonis GJ, Oh TH. Ginsenosides Rb1 and Rg3 protect cultured rat cortical cells from glutamate-induced neurodegeneration. J Neurosci Res 1998;53:426-32. https://doi.org/10.1002/(SICI)1097-4547(19980815)53:4<426::AID-JNR4>3.0.CO;2-8
- Fukui M, Song JM, Choi JY, Choi HJ, Zhu BT. Mechanism of glutamate-induced neurotoxicity inTH22mouse hippocampal cells. Euro J of Pharm 2009;617:1-11. https://doi.org/10.1016/j.ejphar.2009.06.059
- Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO. Mitogen-activated protein kinases and reactive oxygen species; how can ROS activate MAPK pathways? J Signal Transduct 2011;2011:792639.
- Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signaling 2012;24:981-90. https://doi.org/10.1016/j.cellsig.2012.01.008
- Pettmann B1, Henderson CE. Neuronal cell death. Neuron 1998;20:633-47. https://doi.org/10.1016/S0896-6273(00)81004-1
- Bredesen DE. Neural apoptosis. Ann Neurol 1995;38:839-51. https://doi.org/10.1002/ana.410380604
- Zhang Y, Lu X, Bhavnani BR. Equine estrogens differentially inhibit DNA fragmentation induced by glutamate in neuronal cells by modulation of regulatory proteins involved in programmed cell death. BMC Neurosci 2003;4:32. https://doi.org/10.1186/1471-2202-4-32
- Yang E-J, Min JS, Ku H-Y, Choi H-S, Park M, Kim MK, Song K-S, Lee D-S. Isoliquirituugenin isolated from Glycyrrhiza uralensis protects neuronal cells against glutamate-induced mitochondrial dysfunction. Biochem Biophy Res Comm 2012;421:658-64. https://doi.org/10.1016/j.bbrc.2012.04.053
- Landshamer S, Hoehn M, Barth N, Duvezin-Caubet S, Schwake G, Tobaben S, Kazhdan I, Becattini B, Zahler S, Vollmar A, et al. Bid-induced release of AIF from mitochondria causes immediate neuronal cell death. Cell Death Diff 2008;15:1553-63. https://doi.org/10.1038/cdd.2008.78
- Tobaben S, Grohm J, Seiler A, Conrad M, Plesnila N, Culmsee C. Bid-mediated mitochondrial damage is a key mechanism in glutamate-induced oxidative stress and AIF-dependent cell death in immortalized HT-22 hippocampal neurons. Cell Death Diff 2011;18:282-92. https://doi.org/10.1038/cdd.2010.92
- Ong W-Y, Farooqui T, Koh H-L, Farooqui AA, Ling E-A. Protective effects of ginseng on neurological disorders. Front Aging Neurosci 2015;7:129.
Cited by
- Reduction of Mitophagy-Related Oxidative Stress and Preservation of Mitochondria Function Using Melatonin Therapy in an HT22 Hippocampal Neuronal Cell Model of Glutamate-Induced Excitotoxicity vol.10, 2019, https://doi.org/10.3389/fendo.2019.00550
- Partial-root Harvest of American Ginseng (Panax quinquefolius L.): A Non-Destructive Method for Harvesting Root Tissue for Ginsenoside Analysis vol.84, pp.2, 2019, https://doi.org/10.2179/0008-7475.84.2.310
- Neuroprotective Effects of Tetrahydrocurcumin against Glutamate-Induced Oxidative Stress in Hippocampal HT22 Cells vol.25, pp.1, 2020, https://doi.org/10.3390/molecules25010144
- Effects of Ginseng on Neurological Disorders vol.14, 2019, https://doi.org/10.3389/fncel.2020.00055
- Analysis and Identification of Active Compounds from Salviae miltiorrhizae Radix Toxic to HCT-116 Human Colon Cancer Cells vol.10, pp.4, 2019, https://doi.org/10.3390/app10041304
- Hormesis and Ginseng: Ginseng Mixtures and Individual Constituents Commonly Display Hormesis Dose Responses, Especially for Neuroprotective Effects vol.25, pp.11, 2020, https://doi.org/10.3390/molecules25112719
- Protective Effects of Active Compounds from Salviae miltiorrhizae Radix against Glutamate-Induced HT-22 Hippocampal Neuronal Cell Death vol.8, pp.8, 2019, https://doi.org/10.3390/pr8080914
- Mitochondrial connection to ginsenosides vol.43, pp.10, 2019, https://doi.org/10.1007/s12272-020-01279-2
- Antihypoxic Action of Panax Japonicus, Tribulus Terrestris and Dioscorea Deltoidea Cell Cultures: In Silico and Animal Studies vol.39, pp.11, 2019, https://doi.org/10.1002/minf.202000093
- 1-Methoxylespeflorin G11 Protects HT22 Cells from Glutamate-Induced Cell Death through Inhibition of ROS Production and Apoptosis vol.31, pp.2, 2019, https://doi.org/10.4014/jmb.2011.11032
- Neuroprotective Effect of Gallocatechin Gallate on Glutamate-Induced Oxidative Stress in Hippocampal HT22 Cells vol.26, pp.5, 2019, https://doi.org/10.3390/molecules26051387
- Ginsenoside from ginseng: a promising treatment for inflammatory bowel disease vol.73, pp.3, 2019, https://doi.org/10.1007/s43440-020-00213-z
- Inhibition of Alveolar Bone Destruction by Red Ginseng Extract in an Experimental Animal Periodontitis Model vol.50, pp.7, 2021, https://doi.org/10.3746/jkfn.2021.50.7.672
- Azaphilones from an Endophytic Penicillium sp. Prevent Neuronal Cell Death via Inhibition of MAPKs and Reduction of Bax/Bcl-2 Ratio vol.84, pp.8, 2021, https://doi.org/10.1021/acs.jnatprod.1c00298
- Metabolomic analysis of untargeted bovine uterine secretions in dairy cows with endometritis using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry vol.139, 2019, https://doi.org/10.1016/j.rvsc.2021.07.006
- Tandem Mass Spectrometry for the Analysis of Ginsenosides in a Phytoadaptogene Composition with Antitumor Properties vol.55, pp.6, 2019, https://doi.org/10.1134/s0040579521050225
- The Neuroprotective Effect of Increased PINK1 Expression Following Glutamate Excitotoxicity in Neuronal Cells vol.480, 2019, https://doi.org/10.1016/j.neuroscience.2021.11.020