DOI QR코드

DOI QR Code

Numerical Study on the Thermal Design of Lunar Terrain Imager System Loaded on the Korea Pathfinder Lunar Orbiter

시험용 달 궤도선의 광학탑재체 시스템 열설계에 대한 수치해석적 연구

  • Received : 2019.01.22
  • Accepted : 2019.03.26
  • Published : 2019.04.01

Abstract

The thermal design of the Lunar Terrain Imager (LUTI) on the Korean Pathfinder Lunar Orbiter (KPLO) was performed and the soundness of the thermal design was verified by thermal analysis. The thermal environment of the lunar mission orbit should be reflected in the thermal design because the IR radiation of the lunar surface is important, unlike the earth orbit. The components or modules exposed to the outside of the satellite are insulated with MLI as much as possible, but the camera tube and the radiator are functionally exposed, so the thermal shield using the concept of radiation shape factor is mounted on the front to mitigate IR radiation. The IR emissivity is important in the front side of the radiator that receives little solar radiation, and components that are susceptible to thermal deformation such as the tube use a radiation heater to minimize the temperature gradient. Through the investigation of computational results, it was confirmed that the thermal design of LUTI is stable in various situations.

한국형 달 궤도선(Korea Pathfinder Lunar Orbiter, KPLO)에 탑재되는 달 표면지형 광학관측기(Lunar Terrian Imager, LUTI)의 열설계를 수행하고, 열해석을 통하여 열설계의 건전성을 검증하였다. 달 임무궤도의 열환경은 지구궤도와 달리 달 표면의 IR 복사가 중요하므로 이를 열설계에 반영하여야 한다. 위성 외부에 노출되는 부품이나 모듈은 가능한 MLI로 단열시키지만 경통이나 방열판은 기능상 노출되므로 복사형상계수의 개념을 이용한 thermal shield를 전면에 장착함으로써 IR 복사를 완화시킨다. 태양복사를 거의 받지 않는 방열판의 전면부는 IR 방사율이 중요하며, 경통과 같이 열변형에 취약한 부품은 복사히터를 사용하여 온도구배를 최소화시킨다. 열해석 결과분석을 통하여 LUTI의 열설계는 다양한 상황에서 안정적임을 확인하였다.

Keywords

References

  1. McDowell, J., "Satellite Catalog," Jonathan's Space Page, Retrieved 14 August 2013.
  2. Jones, E. M., "The First Lunar Landing," Apollo 11 Lunar Surface Journal, NASA, Retrieved June 13, 2013.
  3. Chin, G., Brylow, S., Foote, M., Garvin, J., Kasper, J., Keller, J., Litvak, M., Mitro-fanov, I., Paige, D., Raney, K., Robinson, M., Sanin, A., Smith, D., Spence, H., Spudis, P., Stern, S. A., and Zuber, M., "Lunar reconnaissance orbiter overview: the instrument suite and mission," Space Science Reviews, Vol. 129, 2007, pp.391-419. https://doi.org/10.1007/s11214-007-9153-y
  4. Kim, T. Y., "Lumped System Analysis on the Lunar Surface Temperature Using the Bottom Conductive Heat Flux Model," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 47, No. 1, 2019, pp.66-74. https://doi.org/10.5139/JKSAS.2019.47.1.66
  5. Vasavada, A. R., Bandfield, J. L., Greenhagen, B. T., Hayne, P. O., Siegler, M. A., Williams, J.-P., and Paige, D. A., "Lunar equatorial surface temperatures and regolith properties from the diviner lunar radiometer experiment," Journal of Geophysical Research, Vol. 117, 2012, E00H18.
  6. Siegel, R., and Howell, J., Thermal Radiation Heat Transfer, 4th ed. Taylor & Francis, 2002.