참고문헌
- Asnafi, A. and Abedi, M. (2015), "A comparison between the dynamic stability of three types of non-linear orthotropic functionally graded plates under random lateral loads", J. Vib. Control, 23(15), 2520-2537. https://doi.org/10.1177/1077546315617857
- Asnafi, A. and Abedi, M. (2015), "A complete analogical study on the dynamic stability analysis of isotropic functionally graded plates subjected to lateral stochastic loads", Acta. Mech., 226(7), 2347-2363. https://doi.org/10.1007/s00707-015-1321-7
- Birman, V. (1995), "Buckling of functionally graded hybrid composite plates", Proc. Eng. Mech. (ASCE), 2, 1199-1202.
- Bolotin, V.V. (1964), The Dynamic Stability of Elastic Systems, San Francisco, Holden-Day.
- Chakrabarti, A. and Sheikh, A.H. (2010), "Dynamic instability of composite and sandwich laminates with interfacial slips", Int. J. Struct. Stab. Dyn., 10(2), 205-224. https://doi.org/10.1142/S0219455410003324
- Chen, C.-S., Chen, C.-W. and Chen, W.-R. (2013), "Dynamic stability characteristics of functionally graded plates under arbitrary periodic loads", Int. J. Struct. Stab. Dyn., 13(6), 1350026. https://doi.org/10.1142/S0219455413500260
- Dey, T. and Ramachandra, L.S. (2014), "Static and dynamic instability analysis of composite cylindrical shell panels subjected to partial edge loading", Int. J. Nonlin. Mech., 64, 46-56. https://doi.org/10.1016/j.ijnonlinmec.2014.03.014
- Dey, T., Kumar, R. and Panda, S.K. (2016), "Postbuckling and postbuckled vibration analysis of sandwich plates under nonuniform mechanical edge loadings", Int. J. Mech. Sci., 115, 226-237. https://doi.org/10.1016/j.ijmecsci.2016.06.025
- Feldman, F. and Aboudi, J. (1997), "Buckling analysis of functionally graded plates subjected to uniaxial loading", Compos. Struct., 38(1), 29-36. https://doi.org/10.1016/S0263-8223(97)00038-X
- Jiang, G., Li, F. and Zhang, C. (2018), "Postbuckling and nonlinear vibration of composite laminated trapezoidal plates", Steel Compos. Struct., Int. J., 26(1), 17-29.
- Kar, V.R. and Panda, S.K. (2015), "Non-linear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., Int. J., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693
- Lanhe, W., Hongjun, W. and Daobin, W. (2007), "Dynamic stability analysis of FGM plates by the moving least squares differential quadrature method", Compos. Struct., 77(3), 383-394. https://doi.org/10.1016/j.compstruct.2005.07.011
- Morimoto, T., Tanigawa, Y. and Kawamura, R. (2006), "Thermal buckling of functionally graded rectangular plates subjected to partial heating", Int. J. Mech. Sci. 48(9), 926-937. https://doi.org/10.1016/j.ijmecsci.2006.03.015
- Ng, T.Y., Lam, K.Y. and Liew, K.M. (2000), "Effects of FGM materials on the parametric resonance of plate structures", Comput. Methods Appl. Mech. Eng., 190(8), 953-962. https://doi.org/10.1016/S0045-7825(99)00455-7
- Ng, T.Y., Lam, K.Y., Liew, K.M. and Reddy, J.N. (2001), "Dynamic stability analysis of functionally graded cylindrical shells under periodic axial loading", Int. J. Solids Struct., 38(8), 1295-1309. https://doi.org/10.1016/S0020-7683(00)00090-1
- Noda, N., Hetnarski, R. and Tanigawa, T. (2002), "Thermal stresses", (2nd Ed.), Taylor & Francis, London, UK.
- Norouzi, H. and Younesian, D. (2016), "Non-linear vibration of laminated composite plates subjected to subsonic flow and external loads", Steel Compos. Struct., Int. J., 22(6), 1261-1280. https://doi.org/10.12989/scs.2016.22.6.1261
- Ovesy, H.R. and Fazilati, J. (2014), "Parametric instability analysis of laminated composite curved shells subjected to nonuniform in-plane load", Compos. Struct., 108, 449-455. https://doi.org/10.1016/j.compstruct.2013.09.048
- Park, W.-T., Han, S.-C., Jung, W.-Y. and Lee, W.-H. (2016), "Dynamic Instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory", Steel Compos. Struct., Int. J., 22(6), 1239-1259. https://doi.org/10.12989/scs.2016.22.6.1239
- Pradyumna, S. and Bandyopadhyay, J.N. (2009), "Dynamic instability of functionally graded shells using higher-order theory", J. Eng. Mech., 136(5), 551-561. https://doi.org/10.1061/(asce)em.1943-7889.0000095
- Ramachandra, L.S. and Panda, S.K. (2012), "Dynamic instability of composite plates subjected to non-uniform in-plane loads", J. Sound Vib., 331, 53-65. https://doi.org/10.1016/j.jsv.2011.08.010
- Reddy, J.N. and Liu, C.F. (1985), "A higher-order shear deformation theory of laminated elastic shells", Int. J. Eng. Sci., 23(3), 319-330. https://doi.org/10.1016/0020-7225(85)90051-5
- Sofiyev, A.H. (2015), "Influences of shear stresses on the dynamic instability of exponentially graded sandwich cylindrical shells", Compos. Part B Eng., 77, 349-362. https://doi.org/10.1016/j.compositesb.2015.03.040
- Sofiyev, A.H. and Kuruoglu, N. (2015a), "Dynamic instability of three-layered cylindrical shells containing an FGM interlayer", Thin-Wall. Struct., 93, 10-21. https://doi.org/10.1016/j.tws.2015.03.006
- Sofiyev, A.H. and Kuruoglu, N. (2015b), "Parametric instability of shear deformable sandwich cylindrical shells containing an FGM core under static and time dependent periodic axial loads", Int. J. Mech. Sci., 101, 114-123. https://doi.org/10.1016/j.ijmecsci.2015.07.025
- Sofiyev, A.H., Zerin, Z., Allahverdiev, B.P., Hui, D., Turan, F. and Erdem, H. (2017), "The Dynamic Instability of FG orthotropic conical shells within the SDT", Steel Compos. Struct., Int. J., 25(5), 581-591.
- Soldatos, K.P. (1991), "A refined laminated plate and shell theory with applications", J. Sound Vib., 144,109-129. https://doi.org/10.1016/0022-460X(91)90736-4
- Sundaresan, P., Singh, G. and Rao, G.V. (1998), "Buckling of moderately thick rectangular composite plate subjected to partial edge compression", Int. J. Mech. Sci., 40, 1105-1117. https://doi.org/10.1016/S0020-7403(98)00009-5
- Thai, H.T. and Choi, D.H. (2012), "An efficient and simple refined theory for buckling analysis of functionally graded plates", Appl. Math. Model., 36(3), 1008-1022. https://doi.org/10.1016/j.apm.2011.07.062
- Torki, M.E., Kazemi, M.T., Reddy, J.N., Haddadpoud, H. and Mahmoudkhani, S. (2014), "Dynamic stability of functionally graded cantilever cylindrical shells under distributed axial follower forces", J. Sound Vib., 333(3), 801-817. https://doi.org/10.1016/j.jsv.2013.09.005
- Yang, J. and Shen, H.S. (2003), "Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels", J. Sound Vib., 261(5), 871-893. https://doi.org/10.1016/S0022-460X(02)01015-5
- Yang, J., Liew, K.M. and Kitipornchai, S. (2004), "Dynamic stability of laminated FGM plates based on higher-order shear deformation theory", Comput. Mech., 33(4), 305-315. https://doi.org/10.1007/s00466-003-0533-1
- Zhang, D.G. and Zhou, Y.H. (2008), "A theoretical analysis of FGM thin plates based on physical neutral surface", Comput. Mat. Sci., 44(2), 716-720. https://doi.org/10.1016/j.commatsci.2008.05.016