DOI QR코드

DOI QR Code

Crack analysis of reinforced concrete members with and without crack queuing algorithm

  • Ng, P.L. (Faculty of Civil Engineering, Vilnius Gediminas Technical University) ;
  • Ma, F.J. (Department of Civil Engineering, The University of Hong Kong) ;
  • Kwan, A.K.H. (Department of Civil Engineering, The University of Hong Kong)
  • Received : 2018.01.17
  • Accepted : 2019.02.08
  • Published : 2019.04.10

Abstract

Due to various numerical problems, crack analysis of reinforced concrete members using the finite element method is confronting with substantial difficulties, rendering the prediction of crack patterns and crack widths a formidable task. The root cause is that the conventional analysis methods are not capable of tracking the crack sequence and accounting for the stress relief and re-distribution during cracking. To address this deficiency, the crack queuing algorithm has been proposed. Basically, at each load increment, iterations are carried out and within each iteration step, only the most critical concrete element is allowed to crack and the stress re-distribution is captured in subsequent iteration by re-formulating the cracked concrete element and re-analysing the whole concrete structure. To demonstrate the effectiveness of the crack queuing algorithm, crack analysis of concrete members tested in the literature is performed with and without the crack queuing algorithm incorporated.

Keywords

Acknowledgement

Supported by : European Commission

References

  1. ACI Committee 224 (2001), ACI 224R-01: Control of Cracking in Concrete Structures, American Concrete Institute, Farmington Hills, Michigan, U.S.A.
  2. ACI Committee 318 (2014), ACI 318R-14: Building Code Requirements for Structural Concrete, American Concrete Institute, Farmington Hills, Michigan, U.S.A.
  3. ACI Committee 408 (2003), ACI 408R-03: Bond and Development of Straight Reinforcing Bars in Tension, American Concrete Institute, Farmington Hills, Michigan, U.S.A.
  4. Anderson, T.L. (2017), Fracture Mechanics: Fundamentals and Applications, 4th Edition, CRC Press, Boca Raton, Florida, U.S.A.
  5. Azevedo, N.M., Lemos, J.V. and Almeida, J.R. (2010), "A discrete particle model for reinforced concrete fracture analysis", Struct. Eng. Mech., 36(3), 343-361. https://doi.org/10.12989/sem.2010.36.3.343
  6. Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Struct., 16(3), 155-177.
  7. Bittencourt, T.N., Wawrzynek, P.A., Ingraffea, A.R. and Sousa, J.L. (1996), "Quasi-automatic simulation of crack propagation for 2D LEFM problems", Eng. Fract. Mech., 55(2), 321-334. https://doi.org/10.1016/0013-7944(95)00247-2
  8. Bobinski, J. and Tejchman, J. (2012), "Application of extended finite element method to cracked concrete elements-numerical aspects", Arch. Civil Eng., 58(4), 409-431. https://doi.org/10.2478/v.10169-012-0022-z
  9. Cervenka, V. (1985), "Constitutive model for cracked reinforced concrete", ACI J. Proc., 82(6), 877-882.
  10. Chen, G. and Baker, G. (2004), "Analysis of crack spacing in reinforced concrete by a lattice model", Adv. Struct. Eng., 7(2), 179-187. https://doi.org/10.1260/1369433041211084
  11. Chen, H.H., Su, R.K.L. and Kwan, A.K.H. (2011), "Fracture toughness of plain concrete made of crushed granite aggregate", Trans. Hong Kong Inst. Eng., 18(2), 6-12.
  12. Chen, S., Yue, Z.Q. and Kwan, A.K.H. (2013), "Actual microstructure-based numerical method for mesomechanics of concrete", Comput. Concrete, 12(1), 1-18. https://doi.org/10.12989/cac.2013.12.1.001
  13. Clark, A.P. (1956), "Cracking in reinforced concrete flexural members", ACI J. Proc., 52(4), 851-862.
  14. Comite Europeen de Normalisation (2004), Eurocode 2: Design of Concrete Structures: Part 1-1: General Rules and Rules for Buildings, British Standards Institution, London, U.K.
  15. Contrafatto, L., Cuomo, M. and Fazio, F. (2012), "An enriched finite element for crack opening and rebar slip in reinforced concrete members", Int. J. Fract., 178(1), 33-50. https://doi.org/10.1007/s10704-012-9723-1
  16. Cusatis, G., Mencarelli, A., Pelessone, D. and Baylot, J.T. (2010), "The lattice discrete particle model (LDPM) for the simulation of uniaxial and multiaxial behavior of concrete: Recent results", Proceedings of the 7th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Seoul, Korea.
  17. De Borst, R. and Nauta, P. (1985), "Non-orthogonal cracks in a smeared finite element model", Eng. Comput., 2(1), 35-46. https://doi.org/10.1108/eb023599
  18. Desayi, P. and Krishnan, S. (1964), "Equation for the stress-strain curve of concrete", ACI J. Proc., 61(3), 345-350.
  19. Elias, J. and Stang, H. (2012), "Lattice modeling of aggregate interlocking in concrete", Int. J. Fract., 175(1), 1-11. https://doi.org/10.1007/s10704-012-9677-3
  20. Federation Internationale du Beton (2013), fib Model Code for Concrete Structures, Ernst & Sohn, Berlin, Germany.
  21. Frantzeskakis, C. and Theillout, J.N. (1989), "Nonlinear finite element analysis of reinforced concrete structures with a particular strategy following the cracking process", Comput. Struct., 31(3), 395-412. https://doi.org/10.1016/0045-7949(89)90387-8
  22. Goodman, R.E., Taylor, R.L. and Brekke, T.L. (1968), "A model for the mechanics of jointed rock", J. Soil Mech. Foundat. Div., 94(3), 637-659. https://doi.org/10.1061/JSFEAQ.0001133
  23. Gupta, A.K. and Akbar, H. (1984), "Cracking in reinforced concrete analysis", J. Struct. Eng., 110(8), 1735-1746. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:8(1735)
  24. Ingraffea, A.R. and Saouma, V. (1985), Numerical Modeling of Discrete Crack Propagation in Reinforced and Plain Concrete, Fracture Mechanics of Concrete: Structural Application and Numerical Calculation, Springer Netherlands.
  25. Jendele, L. and Cervenka, J. (2006), "Finite element modelling of reinforcement with bond", Comput. Struct., 84(28), 1780-1791. https://doi.org/10.1016/j.compstruc.2006.04.010
  26. Khodaie, S., Matta, F. and Alnaggar, M. (2016), "Lattice discrete particle modeling of shear failure in scaled GFRP reinforced concrete beams without stirrups", Proceedings of the 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Berkeley, California, U.S.A.
  27. Kupfer, H.B. and Gerstle, K.H. (1973), "Behavior of concrete under biaxial stresses", J. Eng. Mech. Div., 99(4), 853-866. https://doi.org/10.1061/JMCEA3.0001789
  28. Kwan, A.K.H. (1999), "Finite element analysis of micro-crack propagation in concrete", Proceedings of the 4th Asia-Pacific Conference on Computational Mechanics, Singapore.
  29. Kwan, A.K.H. and He, X.G. (2001), "Finite element analysis of effect of concrete confinement on behaviour of shear walls", Comput. Struct., 79(19), 1799-1810. https://doi.org/10.1016/S0045-7949(01)00092-X
  30. Kwan, A.K.H. and Ma, F.J. (2016), "Crack width analysis of reinforced concrete members under direct tension by finite element method and crack queuing algorithm", Eng. Struct., 126(1), 618-627. https://doi.org/10.1016/j.engstruct.2016.08.027
  31. Kwan, A.K.H., Leung, A.Y.T. and Ng, P.L. (2010), "Adaptive constrained mesh generation: Part 2-accommodation of constraints", Int. J. Appl. Math. Mech., 6(8), 22-45.
  32. Kwan, A.K.H., Ng, P.L. and Wang, Z.M. (2017), "Mesoscopic analysis of crack propagation in concrete by nonlinear finite element method with crack queuing algorithm", Proc. Eng., 172, 620-627. https://doi.org/10.1016/j.proeng.2017.02.072
  33. Kwan, A.K.H., Wang, Z.M. and Chan, H.C. (1999), "Mesoscopic study of concrete II: Nonlinear finite element analysis", Comput. Struct., 70(5), 545-556. https://doi.org/10.1016/S0045-7949(98)00178-3
  34. Ma, F.J. and Kwan, A.K.H. (2015), "Crack width analysis of reinforced concrete members under flexure by finite element method and crack queuing algorithm", Eng. Struct., 105(1), 209-219. https://doi.org/10.1016/j.engstruct.2015.10.012
  35. Mander, J.B. (1983), Seismic Design of Bridge Piers, Ph.D. Dissertation, University of Canterbury, New Zealand.
  36. Moes, N. and Belytschko, T. (2002), "Extended finite element method for cohesive crack growth", Eng. Fract. Mech., 69(7), 813-833. https://doi.org/10.1016/S0013-7944(01)00128-X
  37. Ng, P.L., Kwan, A.K.H. and Leung, A.Y.T. (2010), "Adaptive constrained mesh generation: Part 1-stripwise advancing front technique", Int. J. Appl. Math. Mech., 6(8), 1-21.
  38. Ng, P.L., Lam, J.Y.K. and Kwan, A.K.H. (2011), "Effects of concrete-to-reinforcement bond and loading conditions on tension stiffening", Proc. Eng., 14, 704-714. https://doi.org/10.1016/j.proeng.2011.07.090
  39. Ng, P.L., Ma, F.J. and Kwan, A.K.H. (2015), "Crack analysis of concrete beams based on pseudo-discrete crack model", Proceedings of the 2nd International Conference on Performance-Based and Life-Cycle Structural Engineering, Brisbane, Australia.
  40. Ngo, D. and Scordelis, A.C. (1967), "Finite element analysis of reinforced concrete beams", ACI J. Proc., 64(3), 152-163.
  41. Nilson, A.H. (1968), "Nonlinear analysis of reinforced concrete by the finite element method", ACI J. Proc., 65(9), 757-766.
  42. Ohmenhauser, F., Weihe, S. and Kroplin, B. (1998), "Classification and algorithmic implementation of smeared crack models", Proceedings of the Computational Modelling of Concrete Structures, Badgastein, Austria, Balkema, Rotterdam, the Netherlands.
  43. Radnic, J. and Markota, L. (2003), "Experimental verification of engineering procedures for calculation of crack width in concrete elements", Int. J. Eng. Modell., 16(1), 63-69.
  44. Rashid, Y.R. (1968), "Ultimate strength analysis of prestressed concrete pressure vessels", Nucl. Eng. Des., 7(4), 334-344. https://doi.org/10.1016/0029-5493(68)90066-6
  45. Roth, S.N., Leger, P. and Soulaimani, A. (2013), "XFEM using a non linear fracture mechanics approach for concrete crack propagation in dam safety assessment", Proceedings of the 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Toledo, Spain.
  46. Roth, S.N., Leger, P. and Soulaimani, A. (2015), "A combined XFEM-damage mechanics approach for concrete crack propagation", Comput. Meth. Appl. Mech. Eng., 283, 923-955. https://doi.org/10.1016/j.cma.2014.10.043
  47. Rots, J.G., Nauta, P., Kuster, G.M.A. and Blaauwendraad, J. (1985), "Smeared crack approach and fracture localization in concrete", Heron, 30(1), 1-48.
  48. Schlangen, E. and Garboczi, E.J. (1997), "Fracture simulations of concrete using lattice models: Computational aspects", Eng. Fract. Mech., 57(2-3), 319-332. https://doi.org/10.1016/S0013-7944(97)00010-6
  49. Schlangen, E. and Van Mier, J.G.M. (1992), "Simple lattice model for numerical simulation of fracture of concrete materials and structures", Mater. Struct., 25(9), 534-542. https://doi.org/10.1007/BF02472449
  50. So, M., Harmon, T.G. and Dyke, S. (2010), "FEA implementation of smeared cyclic bond slip-based two-dimensional membrane model", ACI Struct. J., 107(1), 92-100.
  51. Suidan, M. and Schnobrich, W.C. (1973), "Finite element analysis of reinforced concrete", J. Struct. Div., 99(10), 2109-2122. https://doi.org/10.1061/JSDEAG.0003623
  52. Vecchio, F.J. and Collins, M.P. (1993), "Compression response of cracked reinforced concrete", J. Struct. Eng., 119(12), 3590-3610. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:12(3590)
  53. Wang, Z.M., Kwan, A.K.H. and Chan, H.C. (1999), "Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh", Comput. Struct., 70(5), 533-544. https://doi.org/10.1016/S0045-7949(98)00177-1
  54. Wells, G.N. and Sluys, L.J. (2001), "A new method for modelling cohesive cracks using finite elements", Int. J. Numer. Meth. Eng., 50(12), 2667-2682. https://doi.org/10.1002/nme.143
  55. Willam, K. and Pramono, E. (1987), "Fundamental issues of smeared crack models", Proceedings of the SEM/RILEM International Conference of Fracture of Concrete and Rock, Houston, Texas, U.S.A.
  56. Wu, H.Q. and Gilbert, R.I. (2009), "Modeling short-term tension stiffening in reinforced concrete prisms using a continuumbased finite element model", Eng. Struct., 31(10), 2380-2391. https://doi.org/10.1016/j.engstruct.2009.05.012
  57. Yang, Z.J. and Chen, J.F. (2005), "Finite element modelling of multiple cohesive discrete crack propagation in reinforced concrete beams", Eng. Fract. Mech., 72(14), 2280-2297. https://doi.org/10.1016/j.engfracmech.2005.02.004

Cited by

  1. Incorporation of pre-existing longitudinal cracks in finite element analyses of corroded reinforced concrete beams failing in anchorage vol.17, pp.7, 2019, https://doi.org/10.1080/15732479.2020.1782444