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Abstract
In this paper, we propose a new estimation method based on a weighted linear regression framework to obtain

some estimators for unknown parameters in a two-parameter Rayleigh distribution under a progressive Type-II
censoring scheme. We also provide unbiased estimators of the location parameter and scale parameter which have
a nuisance parameter, and an estimator based on a pivotal quantity which does not depend on the other parameter.
The proposed weighted least square estimator (WLSE) of the location parameter is not dependent on the scale
parameter. In addition, the WLSE of the scale parameter is not dependent on the location parameter. The results
are compared with the maximum likelihood method and pivot-based estimation method. The assessments and
comparisons are done using Monte Carlo simulations and real data analysis. The simulation results show that the
estimators µ̂u(θ̂p) and θ̂p(µ̂u) are superior to the other estimators in terms of the mean squared error (MSE) and
bias.
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1. Introduction

In statistics, engineering, economics, and medical research, censoring is a condition in which the value
of a measurement or observation is only partially known. In life testing experiments or reliability, the
observations are often censored. Type-II censoring is the most famous censoring schemes. Type-II
censoring occurs if an experiment has a set number of subjects or items and stops the experiment when
a predetermined number are observed to have failed; the remaining subjects are then right-censored.
But it is not possible to withdraw live units during the experiment. We apply a generalization of the
Type-II censoring scheme, where it is possible to withdraw live units during the experiment, and it
is well known for progressive Type-II censoring schemes. Progressive Type-II censoring has been
suggest in the field of lifetime experiments. Its allowance for the removal of live units from the
experiments at various stages is an attractive feature due to its potential to save cost and time for the
experimenter.

One of the most popular distributions is the Weibull distribution in lifetime experiments. The
Rayleigh distribution can be obtained when the shape parameter of the Weibull distribution is 2. The
Rayleigh distribution was introduced by Rayleigh (1880). The Rayleigh distribution can be used to
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model the lifetime of an object or a service time. The Rayleigh distribution is related to several other
distributions such as the chi-squared distribution, extreme value distribution, exponential distribution,
normal distribution, Rice distributions and Weibull distribution.

The following are the probability density function (pdf) f (x) and the cumulative distribution func-
tion (cdf) F(x) of a random variable X with a two-parameter Rayleigh distribution, location parameter
µ, and scale parameter θ:

f (x; θ, µ) = 2θ(x − µ)e−θ(x−µ)2
, x > µ, θ > 0, (1.1)

F(x; θ, µ) = 1 − e−θ(x−µ)2
, x > µ, θ > 0.

Rayleigh (1880) introduced the Rayleigh distribution, which many studies have since investigated.
Johnson et al. (1994) mentioned the two-parameter Rayleigh distribution in their book. Han and Kang
(2006) derived approximate maximum likelihood estimators (AMLEs) of the scale parameter in the
double Rayleigh distribution. Dey et al. (2014) proposed maximum likelihood estimators (MLEs) and
Bayes estimators for a two-parameter Rayleigh distribution based on progressive Type-II censoring
with binomial removal. Seo et al. (2016) provided the exact confidence intervals for unknown param-
eters and exact predictive intervals for future upper record values by providing some pivotal quantities
in a two-parameter Rayleigh distribution based on the upper record values. Mkolesia and Shatalov
(2017) proposed an exact method for constant minimization of the goal function to estimate parame-
ters of a two-parameter Rayleigh distribution. Fundi et al. (2017) introduced an MLE, EM algorithm,
and NR method for a two-parameter Rayleigh distribution based on progressive Type-II censored sam-
ples. Seo and Kang (2015) proposed a new method based on a pivotal quantity to estimate the scale
parameter of the half logistic distribution based on progressively Type-II censored samples, which
provide a simpler estimation equation than the likelihood equation. Seo and Kang (2017) consid-
ered estimation and prediction problems for two-parameter half-logistic distribution based on pivotal
quantities when a sample is available from a progressively Type-II censoring scheme.

Observations are often censored in experiments for testing lifetime or reliability. Type-I and Type-
II censoring are well-known censoring schemes, but live units cannot be withdrawn during the experi-
ment in these schemes. We apply a generalization of the Type-II censoring scheme where it is possible
to withdraw live units during the experiment, which is well known for progressive Type-II censoring
schemes. This scheme can be explained as follows. Suppose there are n randomly selected units from
the Rayleigh distribution with pdf (1.1) in a lifetime test. Suppose that the observation of failures
begins at the time of the first failure, and a progressive Type-II censored sample of size m − 1 is ob-
served as follows. At the time of the first failure, R1 surviving units are randomly withdrawn from the
test; at the time of the 2nd failure, R2 surviving units are randomly withdrawn from the test, and so
on. Finally, at the time of the mth failure, all the remaining Rm = n − m − R1 − R2 − · · · − Rm−1 are
withdrawn from the test. Let X1:m:n ≤ X2:m:n ≤ · · · ≤ Xm:m:n denote such a progressive Type-II cen-
sored sample with (R1, . . . ,Rm) being the progressive censoring scheme. Balakrishnan and Aggarwala
(2000) provide some historical remarks and a good summary of progressive censoring.

We propose a new approach based on the weighted linear regression framework of unknown pa-
rameters in the two-parameter Rayleigh distribution with pdf (1.1) under the progressive Type-II cen-
soring scheme. The rest of the paper is organized as follows. The maximum likelihood method is
developed in Section 2, and an estimation method for the pivotal quantity is provided to estimate the
location parameter and the scale parameter of the two-parameter Rayleigh distribution under the pro-
gressive Type-II censoring scheme. The new estimation method is proposed in Section 3 based on a
weighted least-square method with progressive Type-II censored samples. In Section 4, the estimation
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methods considered are assessed and compared using Monte Carlo simulations and real data analysis.
Section 5 then concludes the paper.

2. Classical approach

This section provides the MLEs and pivot-based estimators of the location parameter µ and the scale
parameter θ of a two-parameter Rayleigh distribution under the progressive Type-II censoring scheme.

2.1. Maximum likelihood estimation

Let X1:m:n < · · · < Xm:m:n be a progressive Type-II censored sample with censoring scheme (R1, . . . ,Rm)
from a two-parameter Rayleigh distribution. The corresponding likelihood function is:

L(µ, θ) = c
m∏

i=1

f (xi:m:n; θ, µ)
[
1 − F(xi:m:n; θ, µ)

]Ri

= c
m∏

i=1

2θ(xi:m:n − µ)e−(Ri+1)θ(xi:m:n−µ)2
, x > µ, θ > 0, (2.1)

where c = n(n − 1 − R1) · · · (n − R1 − · · · − Rm−1 − m + 1). From (2.1), the natural logarithm of the
likelihood function is:

l(µ, θ) = log L(µ, θ) = c1m ln θ +
m∑

i=1

ln (xi:m:n − µ) − θ
m∑

i=1

(Ri + 1)(xi:m:n − µ)2,

where c1 is a constant. Then, the MLEs of µ and θ, µ̂ and θ̂, can be obtained simultaneously by solving
the following likelihood equations for µ and θ:

∂l(µ, θ)
∂θ

=
m
θ
−

m∑
i=1

(Ri + 1)(xi:m:n − µ)2 = 0,

∂l(µ, θ)
∂µ

= −
m∑

i=1

(xi:m:n − µ)−1 + 2θ
m∑

i=1

(Ri + 1)(xi:m:n − µ) = 0.

2.2. Estimation based on pivotal quantity

Based on the pivotal quantity, we apply the method proposed by Seo and Kang (2016, 2017) to the
two-parameter Rayleigh distribution to obtain the following estimator.

Theorem 1. Suppose that the location parameter µ is known. Then, an unbiased estimator of the
scale parameter θ is

θ̂p(µ) =
m − 1∑m

i=1(Ri + 1)(Xi:m:n − µ)2 . (2.2)

Proof: Let

Yi:m:n = − log[1 − F(Xi:m:n)] = θ(Xi:m:n − µ)2. (2.3)
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Then, Y1:m:n < · · · < Yi:m:n are a progressively Type-II censored sample from the standard exponential
distribution. Here, consider the following transformations

S 1 = nY1:m:n,

S i =

n − i−1∑
j=1

(R j + 1)

 (Yi:m:n − Yi−1:m:n), i = 2, . . . ,m,

which are independent and identically distributed from the standard exponential distribution (see
Viveros and Balakrishnan, 1994). Wang (2009) found the pivotal quantity which has a χ2 distribution
with 2m degrees of freedom:

W1(µ, θ) = 2
m∑

i=1

S i

= 2
m∑

i=1

(Ri + 1)Yi:m:n

= 2θ
m∑

i=1

(Ri + 1)(Xi:m:n − µ)2. (2.4)

The pivotal quantity W1(µ, θ)/(2m − 2) converges to one in probability as m → ∞ because W1(µ, θ)
has a χ2 distribution with 2m degrees of freedom. Therefore, the unbiased estimator θ̂p(µ) is derived
as (2.2) from the equation W1(µ, θ) = 2(m − 1), which completes the proof. �

Note that θ̂p(µ) depends on µ. Now we provide two approaches for estimating µ: an unbiased
estimator based on the first-order statistic and an estimator based on a pivotal quantity, which does
not depend on the other parameter θ.

Theorem 2. When θ is known, an unbiased estimator of µ based on the first order statistic X1:m:n is :

µ̂u(θ) = X1:m:n −
√
π

2
√

nθ
.

Proof: Since µ is always smaller than X1:m:n, its expectation can be expressed as:

µ = E (X1:m:n) + c,

where c is a negative constant. Here, the pdf of X1:m:n is:

fX1:m:n (x) = 2nθ(x − µ)e−θn(x−µ)2
, x > µ.

Therefore, we have

E(X1:m:n) =
∫ ∞

µ

2nθx(x − µ)e−θn(x−µ)2
dx

= 2nθ
∫ ∞

0
t(t + µ)e−θnt2

dt

=

∫ ∞

0
2nθt2e−θnt2

dt + µ
∫ ∞

0
2nθte−θnt2

dt

=

√
π

2
√

nθ
+ µ.
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This completes the proof. �

Note that the estimator µ̂u(θ) depends on θ. Therefore, the estimator θ̂p(µ) can be obtained by
solving the following nonlinear equation when µ is unknown:

θ =
m − 1∑m

i=1(Ri + 1)
[
xi:m:n − x1:m:n +

√
π
/(

2
√

nθ
)]2 .

The result is denoted as θ̂p(µ̂u). We can also obtain the estimator µ̂u(θ̂p) by substituting θ with θ̂p(µ̂u)
in the estimator µ̂u(θ). The following theorem provides another estimator of µ that does not depend
on the other parameter θ.

We obtain an estimator of the location parameter µ by applying the two-parameter Rayleigh dis-
tribution for the formula introduced by Balakrishnan and Cramer (2014).

Theorem 3. An estimator of µ, µ̂p, is the solution of the equation W2(µ) = 2(m − 2), where

W2(µ) = 2(m − 1) log

 m∑
j=1

(R j + 1)(X j:m:n − µ)2


− 2

m−1∑
i=1

log

 i−1∑
j=1

(R j + 1)(X j:m:n − µ)2 +

n − i−1∑
j=1

(R j + 1)

 (Xi:m:n − µ)2

 .
Proof: Because S 1, . . . , S m are independent and identically distributed from the standard exponential
distribution, we can find the pivotal quantities,

Ui =
Ti

Tm
, i = 1, . . . ,m − 1 (2.5)

which are order statistics from the uniform (0, 1) distribution with sample size m − 1, where

Ti =

i∑
j=1

S j = nY1:m:n +

i∑
j=2

n − j−1∑
k=1

(Rk + 1)

 (Y j:m:n − Y j−1:m:n

)
.

Then, from (2.5), we can derive another pivotal quantity,

W2(µ) =
m−1∑
i=1

(−2 log Ui)

= 2
m−1∑
i=1

log


∑m

j=1(R j + 1)Y j:m:n∑i−1
j=1(R j + 1)Y j:m:n +

[
n −∑i−1

j=1(R j + 1)
]

Yi:m:n


which has a χ2 distribution with 2(m − 1) degrees of freedom. Therefore, we obtain the equation
W2(µ) = 2(m − 2) because the pivotal quantity W2(µ)/(2m − 4) converges to one in probability as
m → ∞ as in the case of the pivotal quantity W1(µ, θ). This completes the proof. We denote the
estimator θ̂p(µ) as θ̂p(µ̂p) by substituting µ with µ̂p. �

Remark 1. The MLE µ̂ and the estimator µ̂p based on the pivotal quantity W2(µ) may not be valid
because the estimators may have a value larger than X1:m:n, while the estimator µ̂u(θ̂p) is admissible.
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3. Weighted least square estimation

Lu and Tao (2007) proposed estimation methods based on a linear regression-type framework. We
extend the idea to the progressive Type-II censoring scheme and propose new estimators based on a
weighted least-square method under the progressive Type-II censoring scheme in this section.

From (2.3), we have

Di:m:n = Yi:m:n − Y1:m:n

= θ
(
X2

i:m:n − X2
1:m:n

)
− 2θµ(Xi:m:n − X1:m:n), i = 2, . . . ,m.

This leads to the following linear regression:

E(Di:m:n) = θ
(
X2

i:m:n − X2
1:m:n

)
− 2θµ(Xi:m:n − X1:m:n) + εi, i = 2, . . . ,m, (3.1)

where εi is the error term with E(εi) = 0. Note that the equation (3.1) can be considered a simple
regression line with no intercept. Then, we can obtain new estimators of µ and θ by minimizing the
following weighted least-square equation under the progressive Type-II censoring scheme:

Qwl =

m∑
i=2

wi:m:n

[
E(Di:m:n) − θ

(
X2

i:m:n − X2
1:m:n

)
+ 2θµ(Xi:m:n − X1:m:n)

]2
, (3.2)

where wi:m:n is the weight of each point, and E(Di:m:n) was given by Theorem 7.2.1 from Balakrishnan
and Cramer (2014):

E(Di:m:n) =
i∑

j=2

1
γ j
, 2 ≤ i ≤ m,

γ j =

m∑
i= j

(Ri + 1).

The following theorem provides new estimators of µ and θ by defining the weight wi:m:n.

Theorem 4. Let wi:m:n = 1/Var(Di:m:n), where Var(Di:m:n) =
∑i

j=2 γ
−2
j , 2 ≤ i ≤ m given by Theorem

7.2.1 from Balakrishnan and Cramer (2014). Then, the weighted least-square estimators of µ and θ
are:

µ̂wl =
A1

2A3
−

A2

(
A3A5 − A2

1

)
2A3 (A3A4 − A1A2)

θ̂wl =
A3A4 − A1A2

A3A5 − A2
1

,

respectively, where

A1 =

m∑
i=2

(
X2

i:m:n − X2
1:m:n

)
(Xi:m:n − X1:m:n)

Var(Di:m:n)
,

A2 =

m∑
i=2

E(Di:m:n)(Xi:m:n − X1:m:n)
Var(Di:m:n)

,

A3 =

m∑
i=2

(Xi:m:n − X1:m:n)2

Var(Di:m:n)
,
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A4 =

m∑
i=2

E(Di:m:n)
(
X2

i:m:n − X2
1:m:n

)
Var(Di:m:n)

,

A5 =

m∑
i=2

(
X2

i:m:n − X2
1:m:n

)2

Var(Di:m:n)
.

Proof: Consider the weight wi:m:n which is inversely proportional to the corresponding variance
Var(Di:m:n), as in the case investigated by Lu and Tao (2007). Then, by differentiating with respect
to each parameter in the weighted least-square equation (3.2) with wi:m:n = 1/Var(Di:m:n), the corre-
sponding estimation equations for µ and θ are:

∂Qwl

∂µ
= 4θ

m∑
i=2

[
E(Di:m:n) − θ

(
X2

i:m:n − X2
1:m:n

)
+ 2θµ(Xi:m:n − X1:m:n)

]
(Xi:m:n − X1:m:n)

Var(Di:m:n)

= 0, (3.3)

∂Qwl

∂θ
= −2

m∑
i=2

[
E(Di:m:n) − θ

(
X2

i:m:n − X2
1:m:n

)
+ 2θµ(Xi:m:n − X1:m:n)

]
Var(Di:m:n)

×
[(

X2
i:m:n − X2

1:m:n

)
− 2µ(Xi:m:n − X1:m:n)

]
= 0. (3.4)

In terms of Ai (i = 1, . . . , 5), equations (3.3) and (3.4) can be simplified as follows:

∂Qwl

∂µ
= 4θ(A2 − A1θ + 2A3θµ) = 0,

∂Qwl

∂θ
= −2

(
A4 − 2A2µ − A5θ + 4A1θµ − 4A3θµ

2
)
= 0.

The proof is completed by solving these equations simultaneously. �
Theorem 5. The estimator θ̂wl is always positive.

Proof: Let

B1i =
E(Di:m:n)(Xi:m:n − X1:m:n)

Var(Di:m:n)
,

B2i = Xi:m:n + X1:m:n,

B3i = wi:m:n(Xi:m:n − X1:m:n)2.

Then, we have

A3A4 − A1A2 =

m∑
i=2

B1i

B2i

m∑
i=2

B3i −
m∑

i=2

B2iB3i


=

m∑
i=2

B1i (B2i(B31 + · · · + B3m) − (B21B31 + · · · + B2mB3m))

= B12B22B31 + B13B23B31 + B13B23B32 + · · · + B1mB2mB3m−1

> 0.
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Table 1: The mean squared errors (biases) of the estimators of µ

n m Scheme µ̂ µ̂u(θ̂p) µ̂p µ̂wl

20

18

I 0.02188 (0.11612) 0.01550 (−0.00551) 0.02277 (0.12684) 0.03788 (0.16587)
II 0.02173 (0.11571) 0.01515 (−0.00532) 0.02282 (0.12669) 0.03843 (0.16726)
III 0.02204 (0.11626) 0.01533 (−0.00541) 0.02284 (0.12685) 0.03818 (0.16655)
IV 0.02173 (0.11578) 0.01537 (−0.00550) 0.02263 (0.12630) 0.03820 (0.16662)

14

I 0.02471 (0.12162) 0.01706 (−0.00779) 0.02352 (0.12936) 0.03913 (0.16915)
II 0.02373 (0.11928) 0.01581 (−0.00697) 0.02341 (0.12861) 0.03954 (0.17015)
III 0.02478 (0.12148) 0.01649 (−0.00739) 0.02355 (0.12918) 0.03916 (0.16925)
IV 0.02429 (0.12040) 0.01658 (−0.00774) 0.02298 (0.12780) 0.03889 (0.16812)

30

26

I 0.01318 (0.09163) 0.00993 (−0.00327) 0.01513 (0.10294) 0.02493 (0.13394)
II 0.01305 (0.09126) 0.00968 (−0.00314) 0.01517 (0.10290) 0.02541 (0.13527)
III 0.01336 (0.09189) 0.00981 (−0.00321) 0.01516 (0.10297) 0.02512 (0.13454)
IV 0.01309 (0.09125) 0.00984 (−0.00328) 0.01496 (0.10236) 0.02513 (0.13421)

18

I 0.01466 (0.09518) 0.01053 (−0.00456) 0.01536 (0.10424) 0.02544 (0.13620)
II 0.01408 (0.09346) 0.00969 (−0.00393) 0.01539 (0.10391) 0.02620 (0.13869)
III 0.01480 (0.09518) 0.01012 (−0.00425) 0.01545 (0.10427) 0.02563 (0.13698)
IV 0.01412 (0.09366) 0.01020 (−0.00454) 0.01499 (0.10256) 0.02530 (0.13526)

40

36

I 0.00958 (0.07857) 0.00720 (−0.00055) 0.01152 (0.08997) 0.01850 (0.11451)
II 0.00942 (0.07815) 0.00708 (−0.00050) 0.01150 (0.08991) 0.01876 (0.11540)
III 0.00936 (0.07800) 0.00714 (−0.00053) 0.01151 (0.08994) 0.01861 (0.11498)
IV 0.00939 (0.07809) 0.00716 (−0.00056) 0.01144 (0.08959) 0.01867 (0.11502)

28

I 0.00951 (0.07808) 0.00732 (−0.00257) 0.01162 (0.08943) 0.01876 (0.11604)
II 0.00939 (0.07744) 0.00708 (−0.00233) 0.01152 (0.08961) 0.01925 (0.11794)
III 0.00965 (0.07805) 0.00714 (−0.00245) 0.01167 (0.08954) 0.01893 (0.11675)
IV 0.00932 (0.07739) 0.00719 (−0.00257) 0.01161 (0.08846) 0.01880 (0.11608)

16

I 0.01157 (0.08391) 0.00837 (−0.00489) 0.01174 (0.09027) 0.01963 (0.11965)
II 0.01069 (0.08131) 0.00718 (−0.00388) 0.01160 (0.08994) 0.02033 (0.12252)
III 0.01168 (0.08383) 0.00786 (−0.00440) 0.01172 (0.09046) 0.01983 (0.12053)
IV 0.01091 (0.08189) 0.00793 (−0.00483) 0.01175 (0.08814) 0.01912 (0.11739)

This indicates that the numerator of the estimator θ̂wl is positive. In addition, the denominator is also
positive because

A3A5 = A2
1 +C,

where

C = w2:m:nw3:m:n(X2:m:n − X1:m:n)2
(
X2

3:m:n − X2
1:m:n

)2
+ · · ·

+ wm−1:m:nwm:m:n(Xm−1:m:n − X1:m:n)2
(
X2

m:m:n − X2
1:m:n

)2
.

This completes the proof. �

Remark 2. The estimator µ̂wl may not be valid, as in the case of µ̂ and µ̂p.

4. Application

This section examines the validity of the proposed method through Monte Carlo simulations and real
data analysis.

4.1. Simulation study

To assess and compare the discussed estimators in the Sections 2 and 3, we report their mean squared
errors (MSEs) and biases in Tables 1 and 2. The progressive Type-II censored samples are generated
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Table 2: The mean squared errors (biases) of the estimators of θ

n m Scheme θ̂ θ̂p(µ̂u) θ̂p(µ̂p) θ̂wl

20

18

I 0.46591 (0.39721) 0.16682 (0.04204) 0.28832 (0.32407) 0.35769 (−0.05326)
II 0.40350 (0.36992) 0.15326 (0.03805) 0.26142 (0.29992) 0.30091 (−0.07389)
III 0.44619 (0.38687) 0.16022 (0.04013) 0.27668 (0.31295) 0.33033 (−0.05876)
IV 0.44897 (0.38742) 0.16065 (0.03965) 0.27532 (0.31256) 0.30707 (−0.07153)

14

I 1.11865 (0.56512) 0.30318 (0.06844) 0.53712 (0.42310) 0.76992 (−0.07398)
II 0.67353 (0.44613) 0.22639 (0.05125) 0.37798 (0.33128) 0.45654 (−0.08379)
III 0.91483 (0.51607) 0.26586 (0.06048) 0.48177 (0.38259) 0.62273 (−0.06572)
IV 0.90011 (0.51375) 0.26546 (0.05788) 0.45264 (0.37803) 0.49526 (−0.06645)

30

26

I 0.21751 (0.28219) 0.10272 (0.02802) 0.17030 (0.25442) 0.20453 (−0.03156)
II 0.18717 (0.25844) 0.09252 (0.02451) 0.14841 (0.22962) 0.17011 (−0.05319)
III 0.20705 (0.27286) 0.09777 (0.02635) 0.16004 (0.24284) 0.18812 (−0.03635)
IV 0.20501 (0.27276) 0.09841 (0.02598) 0.15904 (0.24317) 0.17455 (−0.05241)

18

I 0.52673 (0.42172) 0.18040 (0.04666) 0.32749 (0.34999) 0.46649 (−0.05621)
II 0.30468 (0.31619) 0.12977 (0.03214) 0.21060 (0.25289) 0.26352 (−0.07190)
III 0.42688 (0.37807) 0.15587 (0.03995) 0.27173 (0.30692) 0.37518 (−0.04926)
IV 0.42156 (0.37678) 0.15728 (0.03786) 0.26358 (0.30484) 0.28694 (−0.05830)

40

36

I 0.12106 (0.21567) 0.06645 (0.02061) 0.10970 (0.20719) 0.12364 (−0.02572)
II 0.10917 (0.20138) 0.06162 (0.01864) 0.09862 (0.19164) 0.11005 (−0.04145)
III 0.11407 (0.20761) 0.06410 (0.01967) 0.10425 (0.19973) 0.11697 (−0.02993)
IV 0.11516 (0.20943) 0.06452 (0.01952) 0.10472 (0.20058) 0.11211 (−0.04146)

28

I 0.19497 (0.26893) 0.09593 (0.02673) 0.16612 (0.25335) 0.20679 (−0.02887)
II 0.14259 (0.22120) 0.07663 (0.02011) 0.12286 (0.20122) 0.14451 (−0.05070)
III 0.17279 (0.24851) 0.08657 (0.02363) 0.14572 (0.22955) 0.17911 (−0.02910)
IV 0.17107 (0.25031) 0.08804 (0.02289) 0.14529 (0.23122) 0.15269 (−0.04846)

6

I 0.76254 (0.49684) 0.22886 (0.05820) 0.42622 (0.39723) 0.68288 (−0.08647)
II 0.29968 (0.30785) 0.13433 (0.03255) 0.20786 (0.23311) 0.28973 (−0.07801)
III 0.54592 (0.42113) 0.18293 (0.04656) 0.32679 (0.32876) 0.50467 (−0.06786)
IV 0.50642 (0.41166) 0.17992 (0.04134) 0.29847 (0.31805) 0.32605 (−0.04793)

from a two-parameter Rayleigh distribution with µ = 0 and θ = 1 for following censoring schemes:

Scheme I : Rm = n − m and Ri = 0 for i , m,

Scheme II : R1 = n − m and Ri = 0 for i , 1,

Scheme III : R1 = Rm =
n − m

2
and Ri = 0 for i , 1 and m,

Scheme IV : Rm/2 = n − m and Ri = 0 for i ,
m
2
.

As mentioned, the estimators µ̂, µ̂p, and µ̂wl may have a larger value than X1:m:n. In this case, X1:m:n
is used as an estimate. All MSEs and biases are obtained over 10,000 simulations.

Tables 1 and 2 show that, the estimator µ̂u(θ̂p) is more efficient than other estimators for µ, and
the estimator θ̂p(µ̂u) is more efficient than other estimators for θ in terms of the MSE and bias. In
particular, it is notable that the biases of µ̂u(θ̂p) are close to zero, even if the sample size is small. As
expected, the MSEs of all estimators increase generally as the number of unobserved or missing data
n − m increases for fixed sample size n and the MSEs decrease as sample size n increases.

4.2. Real data

We consider a real strength dataset that was originally reported by Badar and Priest (1982). The
dataset includes the strength measured in GPA for single carbon fibers and impregnated 1000-carbon
fiber tows. Dey et al. (2011) showed that the two-parameter Rayleigh distribution fits the data quite
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Table 3: Observed progressive Type-II censored sample

0.562 0.564 0.729 0.802 0.950 1.053 1.111 1.115 1.194 1.208
1.247 1.256 1.271 1.277 1.348 1.390 1.429 1.474 1.503 1.520
1.524 1.551 1.551 1.609 1.632

Table 4: Estimates of µ and θ for the observed progressive Type-II censored sample

µ̂ µ̂u(θ̂p) µ̂p µ̂wl θ̂ θ̂p(µ̂u) θ̂p(µ̂p) θ̂wl
0.455 0.378 0.471 0.562 0.407 0.337 0.403 0.495
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Figure 1: Boxplots and scatterplots between the observed progressive Type-II censored samples and expected
values from (a) fXi:m:n (x; µ̂, θ̂); (b) fXi:m:n (x; µ̂u(θ̂p), θ̂p(µ̂u)); (c) fXi:m:n (x; µ̂p, θ̂p(µ̂p)); (d) fXi:m:n (x; µ̂wl, θ̂wl).

well. For the analysis, we use a progressive Type-II censored sample with the censoring scheme
(24 ∗ 1, 20) from the real data, which was reported by Dey et al. (2015). These values are given in
Table 3. For the assessment of the goodness of fit of the two-parameter Rayleigh distribution, we
first compute the expected values from the estimated marginal density function fXi:m:n (x; µ̃, θ̃). We then
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plot the boxplot and scatterplot with the correlation coefficient (r) between the observed progressive
Type-II censored sample and all expected values (Figure 1). The estimates are reported in Table 4.

Table 4 shows that µ̂wl is out of the range of the parameter µ for the observed progressive Type-II
censored sample because µ̂wl = x1:m:n. Figure 1 shows a strong correlation between the observed a
progressive Type-II censored sample and the expected values from all the estimated marginal den-
sity functions, which indicates that the two-parameter Rayleigh distribution fits a progressive Type-II
censored sample.

5. Concluding remarks

This paper proposed a new estimation method based on a weighted linear regression framework to esti-
mate the unknown parameters of a two-parameter Rayleigh distribution under the progressive Type-II
censoring scheme. The proposed method was compared with the maximum likelihood method and an
estimation method based on the pivotal quantity. In addition, we provided an unbiased estimator of the
location parameter, which has a nuisance parameter as a scale parameter but is admissible, unlike the
other estimators considered. The simulation results showed that the unbiased estimator-based µ̂u(θ̂p)
and θ̂p(µ̂u) are superior to the other estimators considered in terms of the MSE and bias. Therefore, it
is recommended that these estimators be used for the Rayleigh distribution with pdf (1.1) under the
progressive Type-II censoring scheme.

The weighted least square estimator (WLSE) of the location parameter is not dependent on the
scale parameter. In addition, the WLSE of the scale parameter is also not dependent on the location
parameter (Theorem 4). The WLSE of the scale parameter is always greater than 0. Therefore the
range of the scale parameter is always satisfied (Theorem 5).
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