DOI QR코드

DOI QR Code

Effect of Composition on Isotropic Chemical Shift of Na Silicate and Aluminosilicate Glasses Using Solid State NMR

고상 핵자기공명 분광분석을 이용한 비정질 Na 규산염 및 알루미노규산염 내 조성에 따른 등방성 화학적 차폐 변화 규명

  • Park, Sun Young (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Sung Keun (School of Earth and Environmental Sciences, Seoul National University)
  • 박선영 (서울대학교 지구환경과학부) ;
  • 이성근 (서울대학교 지구환경과학부)
  • Received : 2019.01.04
  • Accepted : 2019.02.21
  • Published : 2019.03.31

Abstract

Probing the Na environments in Na silicate and aluminosilicate glasses is essential to the macroscopic properties of melts in the Earth. In particular, exploring the atomic structure of Na silicate and aluminosilicate glasses reveals Na-O distance, which plays an important role in transport properties of melts. Here we report the local environment around Na using $^{23}Na$ magic angle spinning (MAS) NMR. We also obtain $^{23}Na$ isotropic chemical shift (${\delta}_{iso}$) of Na silicate and aluminosilicate glasses with varying composition using Dmfit program. The Q mas 1/2 model simulates the experimental results with three simulated peaks while the CzSimple model simulates with one peak. The ${\delta}_{iso}$ decreases with increasing $SiO_2$ content in Na silicate and aluminosilicate glasses. The ${\delta}_{iso}$ increases with increasing $Na_2O$ content in Na-Ca silicate and Na aluminosilicate glasses when the $SiO_2$ content is fixed. Considering the ${\delta}_{iso}$ of Na aluminosilicate glasses available in the previous studies, together with the current simulation results, we confirm that the ${\delta}_{iso}$ has positive correlation with Al / (Al + Si). Those experimental results were reproduced better using Q mas 1/2 model. The disorder of Na in Na silicate and aluminosilicate glasses can be revealed through the simulation of 1D $^{23}Na$ MAS NMR spectra using Dmfit program in a short time.

비정질 Na-규산염과 Na-알루미노규산염 내의 Na 이온의 원자 환경을 규명하는 것은 Na을 포함하는 지구 내부 마그마의 물성을 규명하는 데 중요하다. 특히 Na 원자 환경의 규명을 통해 이동 물성에 매우 중요한 역할을 하는 Na과 산소와의 거리를 밝힐 수 있다. 본 연구에서는 $^{23}Na$ magic angle spinning (MAS) NMR을 이용하여 비정질 Na 규산염과 알루미노규산염의 Na 주변 원자 환경을 규명하고자 하였고 Dmfit 프로그램을 이용한 시뮬레이션을 통해 ${\delta}_{iso}$ 값을 구했다. Dmfit 프로그램에서 제공하는 여러 모델 중 Q mas 1/2 모델과 CzSimple 모델을 사용하여 비정질 Na-알루미노규산염의 $^{23}Na$ MAS NMR 스펙트럼에 대해 시뮬레이션을 진행한 결과 Q mas 1/2 모델은 세 개의 피크로 CzSimple 모델은 하나의 피크로 실험값이 재현되는 것을 확인하였다. 조성에 따른 등방성 화학적 차폐(isotropic chemical shift, ${\delta}_{iso}$)의 변화를 관찰한 결과 비정질 Na-규산염과 Na-알루미노규산염에서 $SiO_2$의 함량이 증가할수록 ${\delta}_{iso}$ 값이 감소하는 경향성을 보였고 $SiO_2$ 함량이 고정되어 있는 조성에서는 $Na_2O$의 함량이 높을수록 높은 ${\delta}_{iso}$ 값을 보였다. 이전 연구에서 실험적으로 얻어진 값들과 본 연구에서 시뮬레이션을 통해 얻은 값을 비교해본 결과 ${\delta}_{iso}$ 값은 Al / (Al + Si) 값과 양의 상관관계를 보이는 것이 확인되었고 CzSimple 모델에 비해 Q mas 1/2 모델을 사용하여 시뮬레이션 한 값이 실험값을 더 잘 재현하였다. 본 연구의 결과를 통해 1D $^{23}Na$ MAS NMR 스펙트럼의 시뮬레이션을 통해 빠른 시간 내 Na 주변의 무질서도를 밝힐 수 있다는 것이 확인되었다.

Keywords

References

  1. Angeli, F., Delaye, J.M., Charpentier, T., Petit, J.C., Ghaleb, D., and Faucon, P. (2000) Influence of glass chemical composition on the Na-O bond distance: A $^{23}Na$ 3Q-MAS NMR and molecular dynamics study. Journal of Non-Crystalline Solids, 276, 132-144. https://doi.org/10.1016/S0022-3093(00)00259-3
  2. Gaskell, P.H., Eckersley, M.C., Barnes, A.C., and Chieux, P. (1991) Medium-range order in the cation distribution of a calcium silicate glass. Nature, 350, 675-677. https://doi.org/10.1038/350675a0
  3. Gee, B. and Eckert, H. (1996) Cation distribution in mixed-alkali silicate glasses. NMR studies by Na-23-{Li-7} and Na-23-{Li-6} spin echo double resonance. The Journal of Physical Chemistry, 100, 3705-3712. https://doi.org/10.1021/jp9521722
  4. George, A.M. and Stebbins, J.F. (1996) Dynamics of Na in sodium aluminosilicate glasses and liquids. Physics and Chemistry of Minerals, 23, 526-534. https://doi.org/10.1007/BF00242002
  5. Greaves, G.N. and Ngai, K.L. (1995) Reconciling ionic-transport properties with atomic structure in oxide glasses. Physical Review B, 52, 6358-6380. https://doi.org/10.1103/physrevb.52.6358
  6. Houde-Walter, S.N., Inman, J.M., Dent, A.J., and Greaves, G.N. (1993) Sodium and silver environments and ion-exchange processes in silicate and aluminosilicate glasses. The Journal of Physical Chemistry, 97, 9330-9336. https://doi.org/10.1021/j100139a013
  7. Kohn, S.C., Smith, M.E., Dirken, P.J., van Eck, E.R.H., Kentgens, A.P.M., and Dupree, R. (1998) Sodium environments in dry and hydrous albite glasses: Improved $^{23}Na$ solid state NMR data and their implications for water dissolution mechanisms. Geochimica et Cosmochimica Acta, 62, 79-87. https://doi.org/10.1016/S0016-7037(97)00318-9
  8. Lee, S.K. (2011) Simplicity in melt densification in multicomponent magmatic reservoirs in Earth's interior revealed by multinuclear magnetic resonance. Proceedings of the National Academy of Sciences of the United States of America, 108, 6847-6852. https://doi.org/10.1073/pnas.1019634108
  9. Lee, S.K. and Stebbins, J.F. (1999) The degree of aluminum avoidance in aluminosilicate glasses. American Mineralogist, 84, 937-945. https://doi.org/10.2138/am-1999-5-630
  10. Lee, S.K. and Stebbins, J.F. (2003a) The distribution of sodium ions in aluminosilicate glasses: A highfield $^{23}Na$ MAS and 3Q MAS NMR study. Geochimica Et Cosmochimica Acta, 67, 1699-1709. https://doi.org/10.1016/S0016-7037(03)00026-7
  11. Lee, S.K. and Stebbins, J.F. (2003b) Nature of cation mixing and ordering in Na-Ca silicate glasses and melts. Journal of Physical Chemistry B, 107, 3141-3148. https://doi.org/10.1021/jp027489y
  12. Lee, S.K., Yi, Y.S., Cody, G.D., Mibe, K., Fei, Y.W., and Mysen, B.O. (2012) Effect of network polymerization on the pressure-induced structural changes in sodium aluminosilicate glasses and melts: Al-27 and O-17 solid-state NMR study. Journal of Physical Chemistry C, 116, 2183-2191. https://doi.org/10.1021/jp206765s
  13. Maekawa, H., Nakao, T., Shimokawa, S., and Yokokawa, T. (1997) Coordination of sodium ions in $NaAlO_2-SiO_2$ melts: A high temperature $^{23}Na$ NMR study. Physics and Chemistry of Minerals, 24, 53-65. https://doi.org/10.1007/s002690050017
  14. Massiot, D., Fayon, F., Capron, M., King, I., Le Calve, S., Alonso, B., Durand, J.-O., Bujoli, B., Gan, Z., and Hoatson, G. (2002) Modelling one- and two-dimen sional solid-state NMR spectra. Magnetic Resonance in Chemistry, 40, 70-76. https://doi.org/10.1002/mrc.984
  15. Park, S.Y. and Lee, S.K. (2010) Probing atomic structure of quarternary aluminosilicate glasses using solid-state NMR. Journal of the Mineralogical Society of Korea, 22, 343-352.
  16. Park, S.Y. and Lee, S.K. (2018) Probing the structure of Fe-free model basaltic glasses: A view from a solid-state $^{27}Al$ and $^{17}O$ NMR study of Na-Mg silicate glasses, $Na_2O-MgO-Al_2O_3-SiO_2$ glasses, and synthetic Fe-free KLB-1 basaltic glasses. Geochimica et Cosmochimica Acta, 238, 563-579. https://doi.org/10.1016/j.gca.2018.07.032
  17. Ragoen, C., Marple, M.A.T., Sen, S., Lambricht, T., and Godet, S. (2017) Structural modifications induced by $Na^+/K^+$ ion exchange in silicate glasses: A multinuclear NMR spectroscopic study. Journal of Non-Crystalline Solids, 474, 9-15. https://doi.org/10.1016/j.jnoncrysol.2017.08.006
  18. Ratai, E., Janssen, M., and Eckert, H. (1998) Spatial distributions and chemical environments of cations in single- and mixed alkali borate glasses: Evidence from solid state NMR. Solid State Ionics, 105, 25-37. https://doi.org/10.1016/S0167-2738(97)00446-3
  19. Schmidt, B.C., Riemer, T., Kohn, S.C., Behrens, H., and Dupree, R. (2000) Different water solubility mechanisms in hydrous glasses along the Qz-Ab join: Evidence from NMR spectroscopy. Geochimica et Cosmochimica Acta, 64, 513-526. https://doi.org/10.1016/S0016-7037(99)00331-2
  20. Stebbins, J.F. (1998) Cation sites in mixed-alkali oxide glasses: correlations of NMR chemical shift data with site size and bond distance. Solid State Ionics, 112, 137-141. https://doi.org/10.1016/S0167-2738(98)00224-0
  21. Tossell, J.A. (1999) Quantum mechanical calculation of $^{23}Na$ NMR shieldings in silicates and aluminosilicates. Physics and Chemistry of Minerals, 27, 70-80. https://doi.org/10.1007/s002690050242
  22. Xue, X. and Stebbins, J.F. (1993) $^{23}Na$ NMR chemical shifts and local Na coordination environments in silicate crystals, melts and glasses. Physics and Chemistry of Minerals, 20, 297-307. https://doi.org/10.1007/BF00215100