DOI QR코드

DOI QR Code

A Study on the Removal of Penalty Elements and the Improvement of Gold Contents from Gold Concentrate Using Microwave-nitric Acid Leaching

마이크로웨이브-질산침출을 이용한 금 정광으로부터 페널티 원소 제거 및 금 품위 향상 연구

  • Kim, Hyun Soo (Department of Energy and Resource Engineering, Chosun University) ;
  • Oyunbileg, Purev (Department of Energy and Resource Engineering, Chosun University) ;
  • Park, Cheon-Young (Department of Energy and Resource Engineering, Chosun University)
  • Received : 2018.12.19
  • Accepted : 2019.03.15
  • Published : 2019.03.31

Abstract

This study used microwave-nitric acid leaching with the aim of removing penalty elements such as As and Bi. Moreover, enhanced gold content from the gold concentrate sample. The leaching conditions were changed: leaching time, nitric acid concentrations and solid-liquid ratio; In order to improve the removal of penalty elements. As a result of the experiment; sample weight loss rate, As and Bi removal rate and gold content in the solid-residues have been increased when the nitric acid concentration and leaching time were increased while the solid-liquid ratio was decreased. The leaching conditions for the maximum As and Bi removal and gold content were: leaching with a 6.0 M nitric acid solution doing 5 min. At these, the solid-residue sample weight loss was 87 %. As removal rate was 98.23 % and Bi was completely removed (100 %). Furthermore, gold content increased from 81.36 g/t to 487.32 g/t. The XRD of the solid residue showed that pyrite disappeared as the nitric acid concentration was increased, whereas sulfur peaks was increased, too.

본 연구는 금 정광에 함유된 비소(As) 및 비스무스(Bi)와 같은 페널티 원소(penalty elements)를 제거하기 위한 목적으로 마이크로웨이브-질산침출을 이용하였다. 또한, 금 정광 시료로부터 금 함량을 증가시키고자 하였다. 침출조건은 페널티 원소의 제거를 향상시키기 위해 질산농도, 침출시간 그리고 고액비를 변화하였다. 실험결과 고체-잔류물에서 시료무게 감소율, 비소와 비스무스의 제거율 그리고 금 함량은 질산농도와 침출시간이 증가할수록 그리고 고액비가 감소할수록 증가하였다. 최대 비소와 비스무스 제거율 및 금 함량이 얻어지는 침출조건은 질산용액의 농도 6 M, 침출시간 5분이었다. 이때, 고체-잔류물 시료의 무게 감소는 87 %, 비소 제거율은 98.23 %, 비스무스는 거의 제거(100 %)되었고 금 함량은 81.36 g/t에서 487.32 g/t으로 증가하였다. 고체-잔류물을 XRD로 분석한 결과, 질산농도가 증가할수록 황철석 피크들은 사라지고 반면에, 원소 황의 피크들이 증가하였다.

Keywords

References

  1. Al-Harahsheh, M., Kingman, S., Hankins, N., Somerfield, C., Bradshaw, S., and Louw, W. (2005) The influence of microwaves on the leaching kinetics of chalcopyrite. Minerals Engineering, 1259-1268.
  2. Alp, I., Celep, O., and Deveci, H. (2010) Alkaline sulfide pretreatment of an antimonial refractory Au-Ag ore for improved cyanidation. JOM, 62, 41-44.
  3. Amankwah, R.K. and Pickles, C.A. (2009) Microwave roasting of a carbonaceous sulphidic gold concentrate. Minerals Engineering, 22, 1095-1101. https://doi.org/10.1016/j.mineng.2009.02.012
  4. Ashley, P.M., Creagh, C.J., and Ryan, C.G. (2000) Invisible gold in ore and mineral concentrates from the Hillgrove gold-antimony deposits, NSW, Australia. Mineralium Deposita, 35, 285-301. https://doi.org/10.1007/s001260050242
  5. Awe, S.A., Sundkvist, J.E., Bolin, N.J., and Sandstrom, A. (2013) Process flowsheet development for recovering antimony from Sb-bearing copper concentrates. Minerals Engineering, 49, 45-53. https://doi.org/10.1016/j.mineng.2013.04.026
  6. Aylmore, M. and Jaffer, A. (2012) Evaluating process options for treating some refractory ores. Alta 2012 International gold Conference, Annual gathering of the global Gold Ore, Processing Industry May 31-June 1, 2012, Burswood Convention Centre, Perth, Western Australia.
  7. Aylmore, M.G. (2001) Treatment of a refractory gold-copper sulfide concentrate by copper ammoniacal thiosulfate leaching. Minerals Engineering, 14, 615-637. https://doi.org/10.1016/S0892-6875(01)00057-7
  8. Aylmore, M.G. and Klerk, L.W. (2013) Conditions and design considerations for maximising recoverable gold in roasting of refractory gold ores. World Gold Conference/Brisbane, QLD, 26-29 September 2013, 14p.
  9. Batchelor, A.R., Jones, D.A., Plint, S., and Kingman, S.W. (2015) Deriving the ideal ore texture for microwave treatment of metalliferous ores. Minerals Engineering, 84, 116-129. https://doi.org/10.1016/j.mineng.2015.10.007
  10. Bayca, S.U. (2013) Microwave radiation leaching of colemanite in sulfuric acid solutions. Separation and Purification Technology, 105, 24-32. https://doi.org/10.1016/j.seppur.2012.11.014
  11. Celep, O., Alp, I., and Deveci, H. (2011) Improved gold and silver extraction from a refractory antimony ore by pretreatment with alkaline sulphide leach. Hydrometallurgy, 105, 234-239. https://doi.org/10.1016/j.hydromet.2010.10.005
  12. Chen, T.T., Cabri, L.J., and Dutrizac, J.E. (2002) Characterizing gold in refractory sulfide gold ores and residues. JOM, December, 20-22.
  13. Coetzee, L.L., Theron, S.J., van der Merwe, J.D., and Stanek, T.A. (2011) Modern gold deportments and its application to industry. Minerals Engineering, 24, 565-575. https://doi.org/10.1016/j.mineng.2010.09.001
  14. Deditius, A.P., Utsunomiya, S., Penock, D., Ewing, R.C., Ramana, C.V., Becker, U., and Kesler, S.E. (2008) A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance. Geochimica et Cosmochimica Acta, 72, 2919-2939. https://doi.org/10.1016/j.gca.2008.03.014
  15. Xia, D.K. and Pickles, C.A. (1999) Microwave caustic leaching of electric arc furnance dust. Mineral Engineering, 13, 79-94. https://doi.org/10.1016/S0892-6875(99)00151-X
  16. Droppert, D.J. and Shang, Y. (1995) The leaching behaviour of nickeliferous pyrrhotite concentrate in hot nitric acid. Hydrometallurgy, 39, 169-182. https://doi.org/10.1016/0304-386X(95)00034-E
  17. Dunn, J.G. and Chamberlain, A.C. (1997) The recovery of gold from Refractory arsenopyrite concentrates by pyrolysis-Oxidation. Minerals Engineering, 10, 919-928. https://doi.org/10.1016/S0892-6875(97)00074-5
  18. Elmahdy, A.M., Farahat, M., and Hirajima, T. (2016) Comparsion between the effect of microwave irradiation and conventional heat treatments on the magnetic properties of chalcopyrite and pyrite. Advanced Powder Technology, 27, 2424-2431. https://doi.org/10.1016/j.apt.2016.08.020
  19. Fair, K.J. and Basa, F.J. (1989) Treatment of Agnico Eagle's silver-bearing flotation concentrate by the nitrox process. Processing of Complex Ores, 20-24, 411-420. https://doi.org/10.1016/B978-0-08-037283-9.50041-X
  20. Fair, K.K., Schneider, J.C., and van Weert, G. (1987) Options in the nitrox orocess. Proceedings of the Metallurgical Society of the Canadian Institute of Mining and Metallurgy, 279-291.
  21. Fleet, M.E. and Mumin, A.H. (1997) Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin trend gold deposits and laboratory synthesis. American Mineralogist, 82, 182-193. https://doi.org/10.2138/am-1997-1-220
  22. Habashi, F. (1973) Action of nitric acid on chalcopyrite. Tranactions, 254, 224-228.
  23. Haque, K.E. (1999) Microwave energy for mineral treatment processes - A brief review. International Journal of Mineral Processing, 57, 1-24. https://doi.org/10.1016/S0301-7516(99)00009-5
  24. Havlik, T. (2010) Microwave leaching of chalcopyrite-possible improvement in hydrometallurgy. Metal, 64, 25-28.
  25. Hough, R.M., Noble, R.R.P., and Erich, M. (2011) Natural gold nanoparticles. Ore Geology Reviews, 42, 55-61. https://doi.org/10.1016/j.oregeorev.2011.07.003
  26. Huang, J.H. and Rowson, N.A. (2002) Hydrometallurgical decomposition of pyrite and marcasite in a microwave field. Hydrometallurgy, 64, 169-179. https://doi.org/10.1016/S0304-386X(02)00041-5
  27. Kadioglu, Y., Karaca, S., and Bayrakceken, S. (1995) Kinetics of pyrite oxidation in aqueous suspension by nitric acid. Fuel processing Technology, 41, 273-287. https://doi.org/10.1016/0378-3820(94)00101-X
  28. Kim, C.S. and Choi, S.G. (2009) Haenam-Jindo area, Southwestern Korea. Resource Geology, 59, 415-421. https://doi.org/10.1111/j.1751-3928.2009.00108.x
  29. Kingman, S.W., Corfield, G.M., and Rowson, N.A. (1999) Effect of microwave radiation upon the mineralogy and magnetic processing of a massive Norwegian ilmenite ore. Magnetic and Electrical Separation, 9, 131-148. https://doi.org/10.1155/1999/57075
  30. Lane, D.L., Cook, N.J., Grano, S.R., and Ehring, K. (2016) Selective leaching of penalty elements from copper concentrates: A review. Minerals Engineering, 98, 110-121. https://doi.org/10.1016/j.mineng.2016.08.006
  31. Maddox, L.M., Bancroft, G.M., Scaini, M.J., and Lorimer, J.W. (1998) Invisible gold: Comparison of Au deposition on pyrite and arsenopyrite. American Mineralogist, 83, 1240-1245. https://doi.org/10.2138/am-1998-11-1212
  32. Marsden, J. and House, I. (1992) The Chemistry of Gold Extraction. Ellis Horwood, 597p.
  33. Martinez, LL., Segarra, M., Fernandez, M., and Espiell, F. (1993) Kinetics of the dissolution of pure silver and silver-gold alloy in nitric acid solution. Metallurgical Transactions B, 24B, 827-837.
  34. Mooiman, M.B. and Simpson, L. (2016) Refining of gold-and silver-bearing Dore, In; Adams, M.K.(eds) Gold Ore Processing Project Development Operation, Second Edition, Elsevier, 857-870pp.
  35. Morishita, Y., Shimada, N., and Shimada, K. (2008) Invisible gold and arsenic in pyrite from the high-grade Hishikari gold deposit, Japan. Applied Surface Science, 255, 1451-1454. https://doi.org/10.1016/j.apsusc.2008.05.131
  36. Morishita, Y., Shimada, N., and Shimada, K. (2018) Invisible gold in arsenian pyrite from the high-grade Hishikari gold deposit, Japan: Significance of variation and distribution of Au/As ratios in pyrite. Ore Geology Reviews, 95, 79-93. https://doi.org/10.1016/j.oregeorev.2018.02.029
  37. Motasemi, F. and Afzal, M.T. (2013) A review on the microwave-assisted pyrolysis technique. Renewable and Sustainable Energy Reviews, 28, 317-330. https://doi.org/10.1016/j.rser.2013.08.008
  38. Nan, X.Y., Cai, X., and Kong, J. (2014) Pretreatment process on refractory gold ores with As. ISIJ International, 54, 543-547. https://doi.org/10.2355/isijinternational.54.543
  39. Paktunc, D., Kingston, D., and Pratt, A. (2006) Distribution of gold in pyrite and in products of its transformation resulting from roasting of refractory gold ore. The Canadian Mineralogist, 44, 213-227. https://doi.org/10.2113/gscanmin.44.1.213
  40. Palenink, C., Utsunomiya, S., Reich, M., Kes;er, S.E., Wang, L., and Ewing, R.C. (2004) "Invisible" gold revealed: Direct imaging of gold nanoparticles in a Carlin-type deposit. American Mineralogist, 89, 1359-1366. https://doi.org/10.2138/am-2004-1002
  41. Reich, M., kesler, S.E., Utsunomiya, S., Palenik, C.S., Chryssoulis, S.L., and Ewing, R. (2005) Solubility of gold in arsenian pyrite. Geochimica et Cosmochimica Acta, 69, 2781-2796. https://doi.org/10.1016/j.gca.2005.01.011
  42. Simon, G., Huang, H., penner-Hahn, J.E., Kesler, S.E., and Kao, L.S. (1999) Oxidation state of gold and arsenic in gold-bearing arsenican pyrite. American Mineralogist, 84, 1071-1079. https://doi.org/10.2138/am-1999-7-809
  43. Sung, Y.H., Brugger, J., Viobanu, C.L., Pring, A., Skinner, W., and Nugus, M. (2009) Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, eastern goldfields province, western Australia. Miner Deposita, 44, 765-791. https://doi.org/10.1007/s00126-009-0244-4
  44. Swash, P.M. and Ellis, P. (1986) The roasting of arsenical gold ores: A mineralogical perspective. Extractive Metallurgy of Gold, a Mineralogical Perspective. Gold 100. Proceedings of the International Conference on Gold. Volume 2: Extractive Metallurgy of Gold. Johannesburg, Saimm, 235-257.
  45. Thomas, K.G. and Cole, A.P. (2005) Roasting developments-especially oxygenated roasting, In; Mike, D. (eds), Developments in Mineral Processing, 15, 403-432. https://doi.org/10.1016/S0167-4528(05)15017-0
  46. Tongamp, W., Takasaki, Y., and Shibayama, A. (2009) Arsenic removal from copper ores and concentrates through alkaline leaching in NaHS media. Hydrometallurgy, 213-218.
  47. Veres, J., jakabsky, S., and Lovas, M. (2010) Comparison of conventional and microwave assisted leaching of zinc from the basic oxygen furnace dust. Minerallia Slovaca, 42, 369-374.
  48. Wen, T., Zhao, Y., Xiao, Q., Ma, Q., Kang, S., Li, H., and Song, S. (2017) Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy. Results in Physics, 7, 2594-2600. https://doi.org/10.1016/j.rinp.2017.07.035
  49. Yoshikawa, N., Xie, G., Cao, Z., and Louzguine, D.V. (2012) Microwavestructure of selectively heated (hot spot) region in Fe3O4 powder compacts by microwave irradiation. Journal of the European Ceramic Society, 32, 419-424. https://doi.org/10.1016/j.jeurceramsoc.2011.08.028
  50. Zhou, Y., Wang, W., Sun, J., Ma, X., Song, Z., Zhao, X., and Mao, Y. (2017) Direct calorimetry study of metal discharge heating effects induced by microwave irradiation. Applied Thermal Engineering, 125, 386-393. https://doi.org/10.1016/j.applthermaleng.2017.07.024

Cited by

  1. The Recovery of Invisible Gold Using Filter Paper vol.56, pp.4, 2019, https://doi.org/10.32390/ksmer.2019.56.4.315
  2. 마이크로웨이브-질산용출에 의한 금 정광의 용해효율과 여과지를 이용한 비-가시성 금 회수 vol.52, pp.6, 2019, https://doi.org/10.9719/eeg.2019.52.6.595
  3. Observability of Invisible Gold using BSE Imagery and Gold Recovery by Microwave-Nitric Acid Leaching vol.57, pp.1, 2019, https://doi.org/10.32390/ksmer.2020.57.1.001
  4. Liberation of Gold Using Microwave-Nitric Acid Leaching and Separation-Recovery of Native Gold by Hydro-Separation vol.10, pp.4, 2019, https://doi.org/10.3390/min10040327
  5. 마이크로웨이브-질산용출과자력/수력선별에의한자연금및자철석의선별효과 vol.53, pp.2, 2020, https://doi.org/10.9719/eeg.2020.53.2.183