References
- Al-Harahsheh, M., Kingman, S., Hankins, N., Somerfield, C., Bradshaw, S., and Louw, W. (2005) The influence of microwaves on the leaching kinetics of chalcopyrite. Minerals Engineering, 1259-1268.
- Alp, I., Celep, O., and Deveci, H. (2010) Alkaline sulfide pretreatment of an antimonial refractory Au-Ag ore for improved cyanidation. JOM, 62, 41-44.
- Amankwah, R.K. and Pickles, C.A. (2009) Microwave roasting of a carbonaceous sulphidic gold concentrate. Minerals Engineering, 22, 1095-1101. https://doi.org/10.1016/j.mineng.2009.02.012
- Ashley, P.M., Creagh, C.J., and Ryan, C.G. (2000) Invisible gold in ore and mineral concentrates from the Hillgrove gold-antimony deposits, NSW, Australia. Mineralium Deposita, 35, 285-301. https://doi.org/10.1007/s001260050242
- Awe, S.A., Sundkvist, J.E., Bolin, N.J., and Sandstrom, A. (2013) Process flowsheet development for recovering antimony from Sb-bearing copper concentrates. Minerals Engineering, 49, 45-53. https://doi.org/10.1016/j.mineng.2013.04.026
- Aylmore, M. and Jaffer, A. (2012) Evaluating process options for treating some refractory ores. Alta 2012 International gold Conference, Annual gathering of the global Gold Ore, Processing Industry May 31-June 1, 2012, Burswood Convention Centre, Perth, Western Australia.
- Aylmore, M.G. (2001) Treatment of a refractory gold-copper sulfide concentrate by copper ammoniacal thiosulfate leaching. Minerals Engineering, 14, 615-637. https://doi.org/10.1016/S0892-6875(01)00057-7
- Aylmore, M.G. and Klerk, L.W. (2013) Conditions and design considerations for maximising recoverable gold in roasting of refractory gold ores. World Gold Conference/Brisbane, QLD, 26-29 September 2013, 14p.
- Batchelor, A.R., Jones, D.A., Plint, S., and Kingman, S.W. (2015) Deriving the ideal ore texture for microwave treatment of metalliferous ores. Minerals Engineering, 84, 116-129. https://doi.org/10.1016/j.mineng.2015.10.007
- Bayca, S.U. (2013) Microwave radiation leaching of colemanite in sulfuric acid solutions. Separation and Purification Technology, 105, 24-32. https://doi.org/10.1016/j.seppur.2012.11.014
- Celep, O., Alp, I., and Deveci, H. (2011) Improved gold and silver extraction from a refractory antimony ore by pretreatment with alkaline sulphide leach. Hydrometallurgy, 105, 234-239. https://doi.org/10.1016/j.hydromet.2010.10.005
- Chen, T.T., Cabri, L.J., and Dutrizac, J.E. (2002) Characterizing gold in refractory sulfide gold ores and residues. JOM, December, 20-22.
- Coetzee, L.L., Theron, S.J., van der Merwe, J.D., and Stanek, T.A. (2011) Modern gold deportments and its application to industry. Minerals Engineering, 24, 565-575. https://doi.org/10.1016/j.mineng.2010.09.001
- Deditius, A.P., Utsunomiya, S., Penock, D., Ewing, R.C., Ramana, C.V., Becker, U., and Kesler, S.E. (2008) A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance. Geochimica et Cosmochimica Acta, 72, 2919-2939. https://doi.org/10.1016/j.gca.2008.03.014
- Xia, D.K. and Pickles, C.A. (1999) Microwave caustic leaching of electric arc furnance dust. Mineral Engineering, 13, 79-94. https://doi.org/10.1016/S0892-6875(99)00151-X
- Droppert, D.J. and Shang, Y. (1995) The leaching behaviour of nickeliferous pyrrhotite concentrate in hot nitric acid. Hydrometallurgy, 39, 169-182. https://doi.org/10.1016/0304-386X(95)00034-E
- Dunn, J.G. and Chamberlain, A.C. (1997) The recovery of gold from Refractory arsenopyrite concentrates by pyrolysis-Oxidation. Minerals Engineering, 10, 919-928. https://doi.org/10.1016/S0892-6875(97)00074-5
- Elmahdy, A.M., Farahat, M., and Hirajima, T. (2016) Comparsion between the effect of microwave irradiation and conventional heat treatments on the magnetic properties of chalcopyrite and pyrite. Advanced Powder Technology, 27, 2424-2431. https://doi.org/10.1016/j.apt.2016.08.020
- Fair, K.J. and Basa, F.J. (1989) Treatment of Agnico Eagle's silver-bearing flotation concentrate by the nitrox process. Processing of Complex Ores, 20-24, 411-420. https://doi.org/10.1016/B978-0-08-037283-9.50041-X
- Fair, K.K., Schneider, J.C., and van Weert, G. (1987) Options in the nitrox orocess. Proceedings of the Metallurgical Society of the Canadian Institute of Mining and Metallurgy, 279-291.
- Fleet, M.E. and Mumin, A.H. (1997) Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin trend gold deposits and laboratory synthesis. American Mineralogist, 82, 182-193. https://doi.org/10.2138/am-1997-1-220
- Habashi, F. (1973) Action of nitric acid on chalcopyrite. Tranactions, 254, 224-228.
- Haque, K.E. (1999) Microwave energy for mineral treatment processes - A brief review. International Journal of Mineral Processing, 57, 1-24. https://doi.org/10.1016/S0301-7516(99)00009-5
- Havlik, T. (2010) Microwave leaching of chalcopyrite-possible improvement in hydrometallurgy. Metal, 64, 25-28.
- Hough, R.M., Noble, R.R.P., and Erich, M. (2011) Natural gold nanoparticles. Ore Geology Reviews, 42, 55-61. https://doi.org/10.1016/j.oregeorev.2011.07.003
- Huang, J.H. and Rowson, N.A. (2002) Hydrometallurgical decomposition of pyrite and marcasite in a microwave field. Hydrometallurgy, 64, 169-179. https://doi.org/10.1016/S0304-386X(02)00041-5
- Kadioglu, Y., Karaca, S., and Bayrakceken, S. (1995) Kinetics of pyrite oxidation in aqueous suspension by nitric acid. Fuel processing Technology, 41, 273-287. https://doi.org/10.1016/0378-3820(94)00101-X
- Kim, C.S. and Choi, S.G. (2009) Haenam-Jindo area, Southwestern Korea. Resource Geology, 59, 415-421. https://doi.org/10.1111/j.1751-3928.2009.00108.x
- Kingman, S.W., Corfield, G.M., and Rowson, N.A. (1999) Effect of microwave radiation upon the mineralogy and magnetic processing of a massive Norwegian ilmenite ore. Magnetic and Electrical Separation, 9, 131-148. https://doi.org/10.1155/1999/57075
- Lane, D.L., Cook, N.J., Grano, S.R., and Ehring, K. (2016) Selective leaching of penalty elements from copper concentrates: A review. Minerals Engineering, 98, 110-121. https://doi.org/10.1016/j.mineng.2016.08.006
- Maddox, L.M., Bancroft, G.M., Scaini, M.J., and Lorimer, J.W. (1998) Invisible gold: Comparison of Au deposition on pyrite and arsenopyrite. American Mineralogist, 83, 1240-1245. https://doi.org/10.2138/am-1998-11-1212
- Marsden, J. and House, I. (1992) The Chemistry of Gold Extraction. Ellis Horwood, 597p.
- Martinez, LL., Segarra, M., Fernandez, M., and Espiell, F. (1993) Kinetics of the dissolution of pure silver and silver-gold alloy in nitric acid solution. Metallurgical Transactions B, 24B, 827-837.
- Mooiman, M.B. and Simpson, L. (2016) Refining of gold-and silver-bearing Dore, In; Adams, M.K.(eds) Gold Ore Processing Project Development Operation, Second Edition, Elsevier, 857-870pp.
- Morishita, Y., Shimada, N., and Shimada, K. (2008) Invisible gold and arsenic in pyrite from the high-grade Hishikari gold deposit, Japan. Applied Surface Science, 255, 1451-1454. https://doi.org/10.1016/j.apsusc.2008.05.131
- Morishita, Y., Shimada, N., and Shimada, K. (2018) Invisible gold in arsenian pyrite from the high-grade Hishikari gold deposit, Japan: Significance of variation and distribution of Au/As ratios in pyrite. Ore Geology Reviews, 95, 79-93. https://doi.org/10.1016/j.oregeorev.2018.02.029
- Motasemi, F. and Afzal, M.T. (2013) A review on the microwave-assisted pyrolysis technique. Renewable and Sustainable Energy Reviews, 28, 317-330. https://doi.org/10.1016/j.rser.2013.08.008
- Nan, X.Y., Cai, X., and Kong, J. (2014) Pretreatment process on refractory gold ores with As. ISIJ International, 54, 543-547. https://doi.org/10.2355/isijinternational.54.543
- Paktunc, D., Kingston, D., and Pratt, A. (2006) Distribution of gold in pyrite and in products of its transformation resulting from roasting of refractory gold ore. The Canadian Mineralogist, 44, 213-227. https://doi.org/10.2113/gscanmin.44.1.213
- Palenink, C., Utsunomiya, S., Reich, M., Kes;er, S.E., Wang, L., and Ewing, R.C. (2004) "Invisible" gold revealed: Direct imaging of gold nanoparticles in a Carlin-type deposit. American Mineralogist, 89, 1359-1366. https://doi.org/10.2138/am-2004-1002
- Reich, M., kesler, S.E., Utsunomiya, S., Palenik, C.S., Chryssoulis, S.L., and Ewing, R. (2005) Solubility of gold in arsenian pyrite. Geochimica et Cosmochimica Acta, 69, 2781-2796. https://doi.org/10.1016/j.gca.2005.01.011
- Simon, G., Huang, H., penner-Hahn, J.E., Kesler, S.E., and Kao, L.S. (1999) Oxidation state of gold and arsenic in gold-bearing arsenican pyrite. American Mineralogist, 84, 1071-1079. https://doi.org/10.2138/am-1999-7-809
- Sung, Y.H., Brugger, J., Viobanu, C.L., Pring, A., Skinner, W., and Nugus, M. (2009) Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, eastern goldfields province, western Australia. Miner Deposita, 44, 765-791. https://doi.org/10.1007/s00126-009-0244-4
- Swash, P.M. and Ellis, P. (1986) The roasting of arsenical gold ores: A mineralogical perspective. Extractive Metallurgy of Gold, a Mineralogical Perspective. Gold 100. Proceedings of the International Conference on Gold. Volume 2: Extractive Metallurgy of Gold. Johannesburg, Saimm, 235-257.
- Thomas, K.G. and Cole, A.P. (2005) Roasting developments-especially oxygenated roasting, In; Mike, D. (eds), Developments in Mineral Processing, 15, 403-432. https://doi.org/10.1016/S0167-4528(05)15017-0
- Tongamp, W., Takasaki, Y., and Shibayama, A. (2009) Arsenic removal from copper ores and concentrates through alkaline leaching in NaHS media. Hydrometallurgy, 213-218.
- Veres, J., jakabsky, S., and Lovas, M. (2010) Comparison of conventional and microwave assisted leaching of zinc from the basic oxygen furnace dust. Minerallia Slovaca, 42, 369-374.
- Wen, T., Zhao, Y., Xiao, Q., Ma, Q., Kang, S., Li, H., and Song, S. (2017) Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy. Results in Physics, 7, 2594-2600. https://doi.org/10.1016/j.rinp.2017.07.035
- Yoshikawa, N., Xie, G., Cao, Z., and Louzguine, D.V. (2012) Microwavestructure of selectively heated (hot spot) region in Fe3O4 powder compacts by microwave irradiation. Journal of the European Ceramic Society, 32, 419-424. https://doi.org/10.1016/j.jeurceramsoc.2011.08.028
- Zhou, Y., Wang, W., Sun, J., Ma, X., Song, Z., Zhao, X., and Mao, Y. (2017) Direct calorimetry study of metal discharge heating effects induced by microwave irradiation. Applied Thermal Engineering, 125, 386-393. https://doi.org/10.1016/j.applthermaleng.2017.07.024
Cited by
- The Recovery of Invisible Gold Using Filter Paper vol.56, pp.4, 2019, https://doi.org/10.32390/ksmer.2019.56.4.315
- 마이크로웨이브-질산용출에 의한 금 정광의 용해효율과 여과지를 이용한 비-가시성 금 회수 vol.52, pp.6, 2019, https://doi.org/10.9719/eeg.2019.52.6.595
- Observability of Invisible Gold using BSE Imagery and Gold Recovery by Microwave-Nitric Acid Leaching vol.57, pp.1, 2019, https://doi.org/10.32390/ksmer.2020.57.1.001
- Liberation of Gold Using Microwave-Nitric Acid Leaching and Separation-Recovery of Native Gold by Hydro-Separation vol.10, pp.4, 2019, https://doi.org/10.3390/min10040327
- 마이크로웨이브-질산용출과자력/수력선별에의한자연금및자철석의선별효과 vol.53, pp.2, 2020, https://doi.org/10.9719/eeg.2020.53.2.183