Acknowledgement
Supported by : National Natural Science Foundation of China(NSFC), Shenzhen University
References
- ACI 318 (2014), Building Code Requirements for Structural Concrete; American Concrete Institude, Farmington Hills, MI48331, USA.
- AIJ (2010), Standard for Structural Calculation of Steel Reinforced Concrete Structures; Architectural Institute of Japan, Tokyo, Japan.
- AISC 360 (2010), Specification for Structural Steel Buildings; Chicago, IL, USA
- ASTM C39/C39M (2014), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens; West Conshohocken, PA, USA.
- ASTM C136/C136M - 14 (2014), Standard Test Method for Sieve Analysis of Fine and Coarse ;ggregates, West Conshohocken, PA, USA.
- ASTM C1611/C1611M-14(2018), Standard test method for slump flow of self-consolidating concrete; West Conshohocken, PA, USA.
- ASTM E8/E8M - 16A (2016), Standard Test Methods for Tension Testing of Metallic Materials; West Conshohocken, PA, USA.
- Barbos, G.A. (2016), "Long-term Behavior of Ultra - High Performance Concrete (UHPC) Bended Beams", Procedia Technology, 22(1), 203-210. https://doi.org/10.1016/j.protcy.2016.01.045
- Begum, M., Driver, R.G. and Elwi, A.E. (2013), "Behaviour of partially encased composite columns with high strength concrete", Eng. Struct., 56(1), 1718-1727. https://doi.org/10.1016/j.engstruct.2013.07.040
- Carreira, D.J. and Chu, K.H. (1985), "Stress-strain relationship for plain concrete in compression", ACI Journal, 82(6), 797-804.
- Chen, S. and Wu, P. (2016), "Analytical model for predicting axial compressive behavior of steel reinforced concrete column", J. Const. Steel Res., 128, 649-660. https://doi.org/10.1016/j.jcsr.2016.10.001
- Choe, G., Kim, G., Gucunski, N. and Lee, S. (2015), "Evaluation of the mechanical properties of 200MPa ultra-high-strength concrete at elevated temperatures and residual strength of column", Constr. Build. Mater., 86(1), 159-168. https://doi.org/10.1016/j.conbuildmat.2015.03.074
- Deng, Z. and Qu, J. (2015), "The experimental studies on behavior of ultrahigh-performance concrete confined by hybrid fiberreinforced polymer tubes", Adv. Mater. Sci. Eng., 1-18.
- Du, Y., Chen, Z., Wang, Y.-B. and Richard Liew, J.Y. (2017), "Ultimate resistance behavior of rectangular concrete-filled tubular beam-columns made of high-strength steel", J. Const. Steel Res., 133, 418-433. https://doi.org/10.1016/j.jcsr.2017.02.024
- El-Tawil, S. and Deierlein, G.G. (1999), "Strength and ductility of concrete encased composite columns", J. Struct. Eng., 125(9), 1009-1019. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:9(1009)
- Ellobody, E. and Young, B. (2011), "Numerical simulation of concrete encased steel composite columns", J. Const. Steel Res., 67(2), 211-222. https://doi.org/10.1016/j.jcsr.2010.08.003
- Ellobody, E., Young, B. and Lam, D. (2011), "Eccentrically loaded concrete encased steel composite columns", Thin-Wall. Struct., 49(1), 53-65. https://doi.org/10.1016/j.tws.2010.08.006
- Elwi, A.E., Begum, M. and Driver, R.G.(2015), "Parametric study on eccentrically-loaded partially encased composite columns under major axis bending", Steel Compos. Struct., Int. J., 19(5), 1299-1319. https://doi.org/10.12989/scs.2015.19.5.1299
- Eurocode 2 (2004), Design of concrete strctures, part 1-1: General rules and rules for buildings; European Committee for Standardisation, Brussels, Belgium.
- Eurocode 4 (2004), EN 1994-1-1 Design of composite steel and concrete structures; European Committee for Standardisation, Brussels, Belgium.
- Gentian, Z., Chunhua, W., Chunyan, G. and Chenxia, W. (2006), "Experimental study on Mechanical behavior of long columns under eccentric Compression of Steel reinforced concrete", J. Baotou Univ. Iron Steel Technol., 25(4), 384-400.
- Huang, Z. and Liew, J.Y.R. (2016a), "Structural behaviour of steel-concrete-steel sandwich composite wall subjected to compression and end moment", Thin-Wall. Struct., 98, 592-606. https://doi.org/10.1016/j.tws.2015.10.013
- Huang, Z. and Liew, J.Y.R. (2016b), "Steel-concrete-steel sandwich composite structures subjected to extreme loads", Int. J. Steel Struct., 16(14),1009-1028. https://doi.org/10.1007/s13296-016-0026-7
- Huang, Z.Y., Wang, J.Y., Liew, J.R. and Marshall, P.W. (2015), "Lightweight steel-concrete-steel sandwich shell subject to punching shear", Ocean Eng., 102, 146-161. https://doi.org/10.1016/j.oceaneng.2015.04.054
- Javed, M.F., Sulong, N.H.R., Memon, S.A., Rehman, S.K.U. and Khan, N.B. (2017), "FE modelling of the flexural behaviour of square and rectangular steel tubes filled with normal and high strength concrete", Thin-Wall. Struct., 119, 470-481. https://doi.org/10.1016/j.tws.2017.06.025
- JGJ 138 (2016), Code for design of composite structure, Ministry of Housing and Urban-Rural Construction of the People's Republic of China; Beijing, China
- Kim, C.S., Park, H.G., Chung, K.S. and Choi, I.R. (2012), "Eccentric Axial Load Testing for Concrete-Encased Steel Columns Using 800 MPa Steel and 100 MPa Concrete", J. Struct. Eng., 138(8), 1019-1031. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000533
- Kim, C.S., Park, H.G., Chung, K.S. and Choi, I.R. (2014), "Eccentric axial load capacity of high-strength steel-concrete composite columns of various sectional shapes", J. Struct. Eng., 140(4), 04013091. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000879
- Kim, C.S., Park, H.G., Choi, I.R. and Chung, K.S. (2017a), "Effect of Sustained Load on Ultimate Strength of High-Strength Composite Columns Using 800-MPa Steel and 100-MPa Concrete", J. Struct. Eng., 143(3), 04016189. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001676
- Kim, C.S., Park, H.G., Lee, H.J., Choi, I.R. and Chung, K.S. (2017b), "Eccentric axial load test for high-strength composite columns of various sectional configurations", J. Struct. Eng., 43(8), 04017075.
- Lee, J.H. (2013), "Evaluation on Fire Resistance of Ultra-High- Strength Concrete Depending on Aggregates and Fibers Types", J. Kor. Soc. Hazard Mitigat., 13(6), 91-97. https://doi.org/10.9798/KOSHAM.2013.13.6.091
- Lim, J.C. and Ozbakkaloglu, T. (2014), "Stress-strain model for normal- and light-weight concretes under uniaxial and triaxial compression", Constr. Build. Mater., 71, 492-509. https://doi.org/10.1016/j.conbuildmat.2014.08.050
- Lin, M. (2006), Study on High Strength Steel Reinforced Concrete Columns, Xi'an University of Architectural Science and Technology, Xi'an, China.
- Lou, Y. (1996), "Simplified calculation method for stiffened concrete long columns", Indust. Constr., 26(3), 20-22.
- Lu, X.L., Yin, X.W. and Jiang, H.J. (2014), "Experimental study on hysteretic properties of SRC columns with high steel ratio", Steel Compos. Struct., Int. J., 17(3), 287-303. https://doi.org/10.12989/scs.2014.17.3.287
- Lu, D., Du, X., Wang, G., Zhou, A. and Li, A. (2016), "A threedimensional elastoplastic constitutive model for concrete", Comput. Struct., 163, 41-55. https://doi.org/10.1016/j.compstruc.2015.10.003
- Papanikolaou, V.K. and Kappos, A.J. (2007), "Confinementsensitive plasticity constitutive model for concrete in triaxial compression", Int. J. Solids Struct., 44(21), 7021-7048. https://doi.org/10.1016/j.ijsolstr.2007.03.022
- Pereira, M.F., Nardin, S.D. and Debs, A.L.H.C.E. (2016), "Structural behavior of partially encased composite columns under axial loads", Steel Compos. Struct., Int. J., 20(6), 1305-1322. https://doi.org/10.12989/scs.2016.20.6.1305
- Piscesa, B., Attard, M.M., Samani, A.K. and Tangaramvong, S. (2017), "Plasticity Constitutive Model for Stress-Strain Relationship of Confined Concrete", ACI Struct J., 114(2), 361-371. https://doi.org/10.14359/51689428
- Tokgoz, S., Dundar, C. and Tanrikulu, A.K. (2012), "Experimental behaviour of steel fiber high strength reinforced concrete and composite columns", J. Const. Steel Res., 74(1), 98-107. https://doi.org/10.1016/j.jcsr.2012.02.017
- Wang, Z. (2007), Experimental Study and Nonlinear Analysis of Eccentric Columns with High Strength and High Performance of Steel Reinforced Concrete, Xi'an University of Architectural Science and Technology, Xi'an, China.
- Wang, Y.B. and Liew, J.Y.R. (2016), "Constitutive model for confined ultra-high strength concrete in steel tube", Constr. Build. Mater., 126, 812-822. https://doi.org/10.1016/j.conbuildmat.2016.09.079
- Wee, T.H., Chin, M.S. and Mansur, M.A. (1996), "Sress-strain relationship of high-strength concrete in compression", J. Mater. Civil Eng., 8(2), 70-76. https://doi.org/10.1061/(ASCE)0899-1561(1996)8:2(70)
- Xiong, M. and Liew, J.Y.R. (2016), "Mechanical behaviour of ultra-high strength concrete at elevated temperatures and fire resistance of ultra-high strength concrete filled steel tubes", Mater. Des., 104(1), 414-427. https://doi.org/10.1016/j.matdes.2016.05.050
- Yang, Y., Chen, Y., Zhang, J., Xue, Y., Liu, R. and Yu, Y. (2018), "Experimental investigation on shear capacity of partially prefabricated steel reinforced concrete columns", Steel Compos. Struct., Int. J., 28(1), 73-82.
- YB 9082 (2007), Technical specification for steel reinforced concrete structures; General Institute of Architectural Research of China Metallurgical Group, Beijing, China.
- Ye, L. (1995), "Experimental study on stiffened reinforced concrete columns under eccentric compression", J. Architect. Struct., 16(6), 45-52.
- Zhang, L. (2011), Theoretical Study on the Mechanical Behavior and Design Calculation of High Strength and High Performance Concrete Columns with Steel Profile, Xi'an University of Architectural Science and Technology, Xi'an, China.
- Zhu, W., Jia, J. and Zhang, J. (2017), "Experimental research on seismic behavior of steel reinforced high-strength concrete short columns", Steel Compos. Struct., Int. J., 25(5), 603-615.
- Zohrevand, P. and Mirmiran, A. (2013), "Stress-Strain Model of Ultrahigh Performance Concrete Confined by Fiber-Reinforced Polymers", J. Mater. Civil Eng., 25(12), 1822-1829. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000769
Cited by
- Bond-slip behaviour of H-shaped steel embedded in UHPFRC vol.38, pp.5, 2021, https://doi.org/10.12989/scs.2021.38.5.563