DOI QR코드

DOI QR Code

3차원 유한요소해석에 의한 얕은 기초의 지지력 특성

Bearing Capacity Characteristics of Shallow Foundation by Three Dimension FEM

  • Park, Choon-Sik (School of Civil, Environmental and Chemical Engrg., Changwon Univ.) ;
  • Kim, Jong-Hwan (School of Civil, Environmental and Chemical Engrg., Changwon Univ.)
  • 투고 : 2019.02.01
  • 심사 : 2019.03.07
  • 발행 : 2019.03.31

초록

본 연구는 지반 위 얕은 기초의 지지력에 대한 특성을 파악하기 위하여 지반 조건, 기초 크기, 기초 형상 등의 다양한 조건에 대하여 3차원 유한요소해석을 수행하여 기존의 지지력 이론과 비교 검토하였다. 유한요소해석 결과 극한지지력은 기초크기에 따라 지지력이 거듭제곱이나 로그 식으로 차츰 수렴하였고, 지반강도가 증가할수록 지지력 증가가 커지지 않는 직선적인 변화를 보였다. 기존 지지력 이론과 비교한 결과 순수모래는 지지력 비($q_{FEA}/q_{theory}$)가 Terzaghi식의 결과와 가장 유사하였다. 순수점토는 약 0.4~0.6, 일반토사는 0.3~1.3 정도로 산정되었고, 지반강도가 증가할수록 지지력 비가 감소하면서 1.0 이하로 나타났다. 기초 크기에 따른 지지력을 1.0m 기초의 지지력으로 정규화시킨 지지력 비($q_u/q_{u(1.0)}$)는 순수모래에서 ${\phi}=25^{\circ}$, $30^{\circ}$, $35^{\circ}$일 때 이론식의 35%, 15%, 5% 정도로 산정되었고, 순수점토는 크기 효과가 없었으며, 일반토사는 지반강도가 작은 경우에 순수모래의 이론식에 대해 약 10% 이하로 나타났다. 지반강도 증가에 따른 지지력 비는 내부마찰각의 영향이 큰 것으로 나타났다. 기초형상별 지지력 비에 따른 형상계수는 기초형상에 따라 다르게 나타났고, 원형기초는 1.5, 정사각형 기초는 1.3, 직사각형 기초와 연속 기초는 1.1~1.0의 형상계수를 나타내었다.

The purpose of this study is to understand the characteristics of bearing capacity of shallow foundation on the grounds. We made a comparative study of existing bearing capacity theory, based on the three-dimensional finite element analysis with a variety of conditions such as ground condition, foundation scale and foundation shape. In the finite element analysis, the ultimate bearing capacity showed a gradual convergence in the form of exponential function or logarithm function according to the foundation scale. Although the shear strength increased, the bearing capacity tended not to increase but change linearly. In the results of comparative study of existing bearing capacity theory, bearing capacity ratio ($q_{u(FEA)}/q_{u(theory)}$) of pure sand has the outcome closest to those of the Terzaghi method. Pure clay turned out to be about 0.4~0.6 while normal soil was changed in a range of 0.3~1.3. As shear strength is increased, the results turned out to be less than 1.0. Bearing capacity ratio ($q_u/q_{u(1.0)}$), normalized at 1.0m bearing capacity, was about 35%, 15% and 5% of theoretical formula under the condition of ${\phi}=25^{\circ}$, $30^{\circ}$ and $35^{\circ}$ of pure sand; no scale effect was found with pure clay and the normal soil with lower soil strength level showed less than 10% of the theoretical formula of pure sand. Bearing capacity ratio of each case, in accordance with, the shear strength increase, was largely influenced by the internal friction angle. Shape factor of bearing capacity ratios classified by foundation shapes have different results according to the shapes; the shape factor of circular foundation is 1.50, square foundation is 1.30, rectangular and continuous foundations are 1.1~1.0.

키워드

GJBGC4_2019_v35n3_17_f0001.png 이미지

Fig. 1. Modeling by foundation shapes

GJBGC4_2019_v35n3_17_f0002.png 이미지

Fig. 2. Relation of Bearing capacity and settlement by soil type (Case1, Case4, Case7)

GJBGC4_2019_v35n3_17_f0003.png 이미지

Fig. 3. Bearing capacity ratio (qu (FEA)/qu (theory)) of foundation shape by soil type

GJBGC4_2019_v35n3_17_f0004.png 이미지

Fig. 4. Relation of foundation ratio (B/B0) and bearing capacity ratio (qu/qu(1.0)) by cases

GJBGC4_2019_v35n3_17_f0005.png 이미지

Fig. 5. Comparison of bearing capacity by shear strength

GJBGC4_2019_v35n3_17_f0006.png 이미지

Fig. 6. Shape factor of foundation

Table 1. Properties of foundation ground on FEM

GJBGC4_2019_v35n3_17_t0001.png 이미지

Table 2. Size of foundations

GJBGC4_2019_v35n3_17_t0002.png 이미지

Table 3. Analysis cases by soil types

GJBGC4_2019_v35n3_17_t0003.png 이미지

Table 4. Bearing capacity ratio (qu(FEA)/qu(theory)) by soil type

GJBGC4_2019_v35n3_17_t0004.png 이미지

Table 5. Relation of foundation ratio (B/B(1.0)) and bearing capacity ratio (qu/qu(1.0)) for c-ø soil

GJBGC4_2019_v35n3_17_t0005.png 이미지

Table 6. Shape factor of foundation by soil types

GJBGC4_2019_v35n3_17_t0006.png 이미지

참고문헌

  1. Baguelin, F., Je'ze'quel, J. F., and Shields, D. H. (1978), The Pressuremeter and Foundation Enigneering, Trans Tech publications, pp.617.
  2. Bond, D. W. (1961) "Influence of Foundation Size on Settlement", Geotechnique, Vol.11, No.2, pp.121-143. https://doi.org/10.1680/geot.1961.11.2.121
  3. Bowles, J. E. (1997), Analysis and Design of Foundations, 5th edition, McGraw-Hill Company, New York, pp.135.
  4. Chung, H. S., Kim, D. Y., and Kim, J. H. (2003), "Model Tests on the Bearing Capacity and Settlement of Footing Considering Scale Effect", Journal of the Korean Geotechnical Society, Vol.19, No.5, pp.343-354 (in Korean).
  5. D'appolonia, D. J., D'Appolonia, E., and Brisette, R. F. (1968) "Settlement of Spread Footings on Sand", Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.94, No.3, pp. 755-760.
  6. Das, B. M., Puri, V. K., Omar, M. T., and Evgin, E. (1996), "Bearing Capacity of Strip Foundation on Geogrid-Reinforced Scale Effects in Model Test", International Offshore and Polar Engineering Conference, Vol.1.
  7. De Beer, E. E. (1965), "Bearing Capacity and Settlement of Shallow Foundation on Sand", Proc. Symp. Bearing Capacity and Settlement Foundation, Duke University, pp.15-33.
  8. Eun, J. W., Kim, J. H., Park, Y. H., Kim, M. K., Hang, S. U., and Lee, J. H. (2006) "Analysis of Bearing Capacity of Shallow Foundation considering Adjacent Footing Effect", KSCE Conference, pp.1725-1728 (in Korean).
  9. Hansen, J. B. (1970) "A Revised and Extended Formula for Bearing Capacity", Danish Geotechnical Institute, Bulletin 28, Copenhagen.
  10. Kim, J. H. (2011), A Numerical Analysis to Characterize Bearing Capacity of Shallow Foundation, Ph. D. dissertation, Changwon Univ., pp.55-225 (in Korean).
  11. Kim, K. S., Lee, S. R., Park, Y. H., and Kim, S. H. (2012), "Evaluation of Size Effects of Shallow Foundation Settlement Using Large Scale Plate Load Test", Journal of the Korean Geotechnical Society, Vol.28, No.7, pp.67-75 (in Korean). https://doi.org/10.7843/kgs.2012.28.7.67
  12. Lee, Y. S. and Kim, M. M. (1991), "Finite Element Analysis on the Behavior of Soil under a Footing", Journal of the Korean Society of Civil Engineers, Vol.11, No.1, pp.167-176 (in Korean).
  13. Menard, L. (1965), "Regle pour le Calcul de la Force Portante et du Tassement des Foundations en Fonction des Resultats Pressiometri ques", Proceedings 6th ICSMFE, Montreal, Vol.2, pp.295-299.
  14. Meyerhof, G. G. (1953) "The Bearing Capacity of Foundation Under Eccentric and Inclined Loads", Proceedings Third International Conference on Soil Mechanics and Foundation Engineering, Zurich, Vol.1, pp.440-445.
  15. Meyerhof, G. G. (1963), "Some Recent Research on the Bearing Capacity of Foundation", Canadian Geotechnical Journal, Vol. , No.1, pp.16-26.
  16. Oh, J. W. (1999), Design and Construction of Retaining Wall, Engineers, Seoul, pp.178-190 (in Korean).
  17. Park, G. P., Bae, K. T., Chang, S. M., and Lee, C. K. (2003), "Analysis of Bearing Capacity and Settlement of Shallow Foundation Using Numerical Method", KSCE Conference, pp.3983-3987 (in Korean).
  18. Peck, R. B., Hanson, W. E., and Thornburn, T. H. (1974), Foundation Engineering, Second Edition, John Wiley and Sons, pp.514.
  19. Terzaghi, K. (1943), Theoretical soil mechanics, John Wiley and Sons Inc., New York, pp.118-143.
  20. Terzaghi, K. and Peck, R. B. (1967), Soil Mechanics in Engineering Practice, 2nd Ed., John Wiley and Sons. Inc., New York, pp.729.
  21. Vesic, A. S. (1973) "Analysis of Ultimate Loads of Shallow Foundations", Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.99, No.1, pp.41-61.
  22. Zhu, F., Clark, J. I., and Phillips, R. (2001), "Scale Effect of Strip and Circular Footings Resting on Dense Sand", Journal of the Geotechnical Engineering, ASCE, Vol.127, No.7, pp.613-621. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:7(613)