DOI QR코드

DOI QR Code

A 2.4 GHz Low-Noise Coupled Ring Oscillator with Quadrature Output for Sensor Networks

센서 네트워크를 위한 2.4 GHz 저잡음 커플드 링 발진기

  • Shim, Jae Hoon (School of Electronics Engineering, Kyungpook National Unversity)
  • Received : 2019.03.23
  • Accepted : 2019.03.27
  • Published : 2019.03.31

Abstract

The voltage-controlled oscillator is one of the fundamental building blocks that determine the signal quality and power consumption in RF transceivers for wireless sensor networks. Ring oscillators are attractive owing to their small form factor and multi-phase capability despite the relatively poor phase noise performance in comparison with LC oscillators. The phase noise of a ring oscillator can be improved by using a coupled structure that works at a lower frequency. This paper introduces a 2.4 GHz low-noise ring oscillator that consists of two 3-stage coupled ring oscillators. Each sub-oscillator operates at 800 MHz, and the multi-phase signals are combined to generate a 2.4 GHz quadrature output. The voltage-controlled ring oscillator designed in a 65-nm standard CMOS technology has a tuning range of 800 MHz and exhibits the phase noise of -104 dBc/Hz at 1 MHz offset. The power consumption is 13.3 mW from a 1.2 V supply voltage.

Keywords

HSSHBT_2019_v28n2_121_f0001.png 이미지

Fig. 1. Ring oscillator using negative skewed scheme: (a) conceptual diagram, (b) schematic diagram [3].

HSSHBT_2019_v28n2_121_f0002.png 이미지

Fig. 2. Frequency multiplication by combining 0˚, 120˚, 240˚ signals.

HSSHBT_2019_v28n2_121_f0003.png 이미지

Fig. 3. Coupled ring oscillators [7,8].

HSSHBT_2019_v28n2_121_f0004.png 이미지

Fig. 4. Overall architecture of the proposed oscillator.

HSSHBT_2019_v28n2_121_f0005.png 이미지

Fig. 5. Delay cell.

HSSHBT_2019_v28n2_121_f0006.png 이미지

Fig. 6. Coupled 3-stage ring oscillators.

HSSHBT_2019_v28n2_121_f0007.png 이미지

Fig. 7. Simulated waveform of multiphase signals.

HSSHBT_2019_v28n2_121_f0008.png 이미지

Fig. 8. Frequency multiplier.

HSSHBT_2019_v28n2_121_f0009.png 이미지

Fig. 9. Simulated waveform of frequency multipliers.

HSSHBT_2019_v28n2_121_f0010.png 이미지

Fig. 10. The 3-stage ring oscillator with dual delay path(C3 structure).

HSSHBT_2019_v28n2_121_f0011.png 이미지

Fig. 11. Simulated frequency range of the proposed VCO.

HSSHBT_2019_v28n2_121_f0012.png 이미지

Fig. 12. Simulated phase noise.

Table 1. List of designed ring oscillators.

HSSHBT_2019_v28n2_121_t0001.png 이미지

Table 3. Performance summary and comparison of VCOs

HSSHBT_2019_v28n2_121_t0003.png 이미지

Table 2. Performance comparison of various ring oscillator structures.

HSSHBT_2019_v28n2_121_t0004.png 이미지

References

  1. O. Jung, H. Seok, A. Dissanayake, and S. Lee, "A 45-uW, 162.1-dBc/Hz FoM, 490-MHz Two-Stage Differential Ring VCO Without a Cross-Coupled Latch", IEEE Trans. Circuits Syst. II Exp. Briefs, Vol. 65, No. 11, pp. 1579-1583, 2018. https://doi.org/10.1109/TCSII.2017.2766674
  2. B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, New York, pp. 215-217, 2001.
  3. S.-J. Lee, B. Kim, and K. Lee, "A novel high-speed ring oscillator for multiphase clock generation using negative skewed delay scheme", IEEE J. Solid-State Circuits, Vol. 32, No. 2, pp. 289-291, 1997. https://doi.org/10.1109/4.551926
  4. Y.-L. Tang and H. Wang, "Triple-push oscillator approach: Theory and experiments", IEEE J. Solid-State Circuits, Vol. 36, No. 10, pp. 1472-1479, 2001. https://doi.org/10.1109/4.953475
  5. C.-C. Li, C.-C. Chen, B.-J. Huang, P.-C. Huang, K.-Y. Lin, and H. Wang, "A novel ring-based triple-push 0.2-to-34 GHz VCO in 0.13 m CMOS technology", IEEE IMS Dig. Tech. Pap., pp. 347-350, Atlanta, U.S.A, 2008.
  6. B. Catli and M. M. Hella, "Triple-push operation for combined oscillation/divison functionality in millimeter-wave frequency synthesizers", IEEE J. Solid-State Circuits, Vol. 45, No. 8, pp. 1575-1589, 2010. https://doi.org/10.1109/JSSC.2010.2049915
  7. M. M. Abdul-Latif and E. Sanchez-Sinencio, "Low Phase Noise Wide Tuning Range N-Push Cyclic-Coupled Ring Oscillators", IEEE J. Solid-State Circuits, Vol. 47, No. 6, pp. 1278-1294, 2012. https://doi.org/10.1109/JSSC.2012.2188564
  8. J. G. Maneatis and M. A. Horowitz, "Precise delay generation using coupled oscillators", IEEE J. Solid-State Circuits, Vol. 28, No. 12, pp. 1273-1282, 1993. https://doi.org/10.1109/4.262000
  9. R. Wang and F. F. Dai, "A 1?1.5 GHz capacitive coupled inductor-less multi-ring oscillator with improved phase noise", 42nd Eur. Solid-State Circuits Conf., pp. 377-380, Lausanne, Switzerland, 2016.
  10. C.-H. Park and B. Kim, "A low-noise, 900-MHz VCO in $0.6-{\mu}m$ CMOS", IEEE J. Solid-State Circuits, Vol. 34, No. 5, pp. 586-591, 1999. https://doi.org/10.1109/4.760367
  11. L. Kong and B. Razavi, "A 2.4 GHz 4 mW Integer-N Inductorless RF Synthesizer", IEEE J. Solid-State Circuits, Vol. 51, No. 3, pp. 626-635, 2016. https://doi.org/10.1109/JSSC.2015.2511157
  12. E. J. Pankratz and E. Sanchez-Sinencio, "Multiloop High-Power-Supply-Rejection Quadrature Ring Oscillator", IEEE J. Solid-State Circuits, Vol. 47, No. 9, pp. 2033-2048, 2012. https://doi.org/10.1109/JSSC.2012.2193517
  13. C. Zhai, J. Fredenburg, J. Bell, and M. P. Flynn, "An N-path filter enhanced low phase noise ring VCO", 2014 Symp. VLSI Circuits Dig. Tech. Pap., pp. 1-2, Honolulu, U. S. A., 2014.