Fig. 1. Structure of artificial neuron and deep neural network. 그림 1. 인공뉴런과 인공신경망의 구조
Fig. 2. Structure of Recurrent Neural Network. 그림 2. 순환 신경망의 구조
Fig. 3. Structure of GRU. 그림 3. GRU의 구조
Fig. 4. Prediction result of GRU. 그림.4 GRU의 예측결과
Fig. 5. Prediction result of LSTM. 그림 5. LSTM의 예측결과
Table 1. Parameters of experiments. 표 1. 실험 파라미터
Table 2. Performance evaluation of LSTM and GRU. 표 2. LSTM과 GRU의 성능평가
References
- Y. Cheng, C. Xu, D. Mashima, V. L. L. Thing and Y. Wu, "PowerLSTM: Power demand forecasting using long short-term memory neural network," in Proc. of Advanced Data Mining and Applications: 13th International Conference, Singapore, Singapore, pp. 727-740, 2017. DOI: 10.1007/978-3-319-69179-4_51
- J. Y. Choi and B. Lee, "Combining LSTM network ensemble via adaptive weighting for improved time series forecasting," Mathematical Problems in Engineering, vol. 2018, pp. 1-8, 2018. DOI: 10.1155/2018/2470171
- W. He, "Load forecasting via deep neural networks," in Proc. of 5th International Conference on Information Technology and Quantitative Management, ITQM 2017, New Delhi, India, vol. 122, pp. 308-314, 2017. DOI: 10.1016/j.procs.2017.11.374
- S. P. Kim, Deep Learning First Step, Hanbit media, 2016.
- I. Goodfellow, Deep Learning, MIT Press, 2016.
- K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk and Y. Bengio, "Learning phrase representations using RNN encoder-decoder for statistical machine translation," in Proc. of 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, pp. 1724-1734, 2014. DOI: 10.3115/v1/D14-1179
- R. Jozefowicz, W. Zaremba and I. Sutskever, "An empirical exploration of recurrent network architectures," in Proc. of ICML'15 32nd International Conference on Machine Learning, Lille, France, pp. 2342-2350, 2015.
- J. Chung, C. Gulcehre, K. Cho and Y. Bengio, "Empirical evaluation of gated recurrent neural networks on sequence modeling," in Proc. of NIPS 2014 Workshop on Deep Learning, Montreal, Canada, pp. 1-9, 2014.
- M. Liberatore and P. Shenoy, "UMass Trace Respository," http://traces.cs.umass.edu/
- S. Hansun, "A new approach of moving average method in time series analysis," in Proc. of 2013 Conference on New Media Studies (ConMedia), Tangerang, Indonesia, pp. 1-4, 2013. DOI: 10.1109/CoNMedia.2013.6708545
- Z. Wang and A. C. Bovik, "Mean squared error: love it or leave it? A new look at signal fidelity measures," IEEE Signal Processing Magazine, vol. 26, no. 1, pp. 98-117, 2009. DOI: 10.1109/MSP.2008.930649
- T. Chai and R. R. Draxler, "Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature," Geoscientific Model Development, vol. 7, no. 3, pp.1247-1250, 2014. DOI: 10.5194/gmd-7-1247-2014
- S. Srivastava and S. Lessmann, "A comparative study of LSTM neural networks in forecasting day-ahead global horizontal irradiance with satellite data," Solar Energy, vol. 162, pp. 232-247, 2018. DOI: 10.1016/j.solener.2018.01.005
- B. Yildiz, J. I. Bilbao, J. Dore and A. Sproul, "Household electricity load forecasting using historical smart meter data with clustering and classification techniques," in Proc. of 2018 IEEE Innovative Smart Grid Technologies - Asia(ISGT Asia), Singapore, Singapore, pp. 873-879, 2018. DOI: 10.1109/ISGT-Asia.2018.8467837