DOI QR코드

DOI QR Code

인공광 이용에 따른 작물의 기능성 물질의 차별적 증가

Varying Effects of Artificial Light on Plant Functional Metabolites

  • 김양민 (농촌진흥청 국립농업과학원 농업환경부 토양비료과) ;
  • 성좌경 (충북대학교 농업생명환경대학 식물자원학과) ;
  • 이예진 (농촌진흥청 국립농업과학원 농업환경부 토양비료과) ;
  • 이덕배 (농촌진흥청 국립농업과학원 농업환경부 토양비료과) ;
  • 류철현 (농촌진흥청 국립농업과학원 농업환경부 토양비료과) ;
  • 이슬비 (농촌진흥청 국립농업과학원 농업환경부 토양비료과)
  • Kim, Yang Min (Soil and Fertilizer Division, Department of Agricultural Environment, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Sung, Jwa Kyung (Department of Crop Science, College of Agriculture, Life and Environment Sciences, Chungbuk National University) ;
  • Lee, Ye Jin (Soil and Fertilizer Division, Department of Agricultural Environment, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Deog Bae (Soil and Fertilizer Division, Department of Agricultural Environment, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Yoo, Chul Hyun (Soil and Fertilizer Division, Department of Agricultural Environment, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Seul Bi (Soil and Fertilizer Division, Department of Agricultural Environment, National Institute of Agricultural Sciences, Rural Development Administration)
  • 투고 : 2019.01.02
  • 심사 : 2019.03.29
  • 발행 : 2019.03.31

초록

최근 10년 동안 LED등의 인공광원을 사용하여 작물을 재배한 많은 연구들이 수행되었다. 인공광원 중 LED를 조사한 연구가 가장 많았고, 이는 LED의 에너지 효율성 및 광합성에 필요한 특정파장 비율을 디자인하여 조사할 수 있는 장점 때문이라 여겨진다. 광질이 작물 기능성 물질 생산에 큰 영향을 미쳤는데, 밀폐시설과 시설재배에서의 영향에 차이가 있었다. 밀폐시설에서 재배할 때 인공광의 광질에 따라 증가되는 기능성물질차이 외에도, 동일 광질을 사용하더라도 작물별로 증가되는 기능성물질이 달랐다. 자연광을 주광원으로 이용하고 인공광을 보광으로 사용한 연구에서, 밀폐시설에서의 연구와 동일한 광질을 보광으로 사용하더라도 기능성물질 생산 측면에서는 다른 결과를 보였다. 따라서, 밀폐시스템과 시설재배에 대한 보광연구 양쪽 모두 필요하다고 판단된다. 또한 광질에 의한 기능성물질 함량의 증가와 별도로 작물의 생산성이 고려된 기능성물질의 총생산량의 관점에서도 평가될 필요가 있다. 작물별, 광질별, 재배환경에 따라 작물의 기능성 물질이 차별적으로 증가할 수 있으므로, 기능성 물질 증진을 위한 작물 재배를 위해서는 환경제어-기능성물질-생산성이 종합적으로 평가되어야 할 것이다.

BACKGROUND: Many studies on artificial lighting have been recently performed to investigate its effect on agricultural products with good quality. This review was aimed at comparing the effects of artificial light on functional metabolites of the plants that were grown in greenhouses and growth chamber. METHODS AND RESULTS: It has been summarized that artificial lighting both in growth chambers and greenhouses caused different functional metabolites patterns depending on light quality. Even though the same light quality was applied, different patterns in metabolites were observed in different plant species. For the same species, supplementation of the same light quality in both growth chambers and greenhouses did cause different functional metabolites patterns. CONCLUSION: Artificial lighting caused different patterns in functional metabolites of plants grown in greenhouses and growth chambers, depending on the light quality and/or plant species. The manipulation of plant growth and functional metabolites would be possible by engineering the light qualities, but knowledge on proper lighting condition depending on plant species and growth places would be necessary.

키워드

참고문헌

  1. Arena, C., Tsonev, T., Doneva, D., De Micco, V., Michelozzi, M., Brunetti, C., Centritto, M., Fineschi, S., Velikova, V., & Loreto, F. (2016). The effect of light quality on growth, photosynthesis, leaf anatomy and volatile isoprenoids of a monoterpene-emitting herbaceous species (Solanum lycopersicum L.) and an isoprene-emitting tree (Platanus orientalis L.). Environmental and Experimental Botany, 130, 122-132. https://doi.org/10.1016/j.envexpbot.2016.05.014
  2. Bantis, F., Karamanoli, K., Ainalidou, A., Radoglou, K., & Constantinidou, H. I. A. (2018). Light emitting diodes (LEDs) affect morphological, physiological and phytochemical characteristics of pomegranate seedlings. Scientia Horticulturae, 234, 267-274. https://doi.org/10.1016/j.scienta.2018.02.065
  3. Choi, J. H., Kang, E. S., Kim, J. S., & Eun, J. S. (2015). Effect of LED lighting on growth and functional material contents in perilla (Perilla frutesens L.). Journal of Agriculture & Life Sciences, 46, 9-15.
  4. Cybularz-Urban, T., Hanus-Fajerska, E., & Swiderski, A. (2007). Effect of light wavelength on in vitro organogenesis of a Cattleya hybrid. Acta Biologica Cracoviensia, 49(1), 113-118.
  5. Dzakovich, M. P., Gomez, C., & Mitchell, C. A. (2015). Tomatoes grown with light-emitting diodes or high-pressure sodium supplemental lights have similar fruit-quality attributes. HortScience, 50(10), 1498-1502. https://doi.org/10.21273/HORTSCI.50.10.1498
  6. Goins, G. D., Yorio, N. C., Sanwo, M. M., & Brown, C. S. (1997). Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. Journal of Experimental Botany, 48(7), 1407-1413. https://doi.org/10.1093/jxb/48.7.1407
  7. Gupta, S. D., & Karmakar, A. (2017). Machine vision based evaluation of impact of light emitting diodes (LEDs) on shoot regeneration and the effect of spectral quality on phenolic content and antioxidant capacity in Swertia chirata. Journal of Photochemistry and Photobiology B: Biology, 174, 162-172. https://doi.org/10.1016/j.jphotobiol.2017.07.029
  8. Heo, J. W., Kim, H. H., Lee, K. J., Yoon, J. B., Lee, J. K., Huh, Y. S., & Lee, K. Y. (2015). Effect of supplementary radiation on growth of greenhouse-grown kales. Korean Journal of Environmental Agriculture, 34(1), 38-45. https://doi.org/10.5338/KJEA.2015.34.1.02
  9. Heo, J. W., Lee, Y. B., Kim, D. E., Chang, Y. S., & Chun, C. (2010). Effects of supplementary LED lighting on growth and biochemical parameters in Dieffenbachia amoena 'Camella'and Ficus elastica 'Melany. Horticultural Science and Technology, 28(1), 51-58.
  10. Jiang, C., Johkan, M., Hohjo, M., Tsukagoshi, S., Ebihara, M., Nakaminami, A., & Maruo, T. (2017). Photosynthesis, plant growth, and fruit production of single-truss tomato improves with supplemental lighting provided from underneath or within the inner canopy. Scientia Horticulturae, 222, 221-229. https://doi.org/10.1016/j.scienta.2017.04.026
  11. Jung, E. S., Lee, S., Lim, S. H., Ha, S. H., Liu, K. H., & Lee, C. H. (2013). Metabolite profiling of the short-term responses of rice leaves (Oryza sativa cv. Ilmi) cultivated under different LED lights and its correlations with antioxidant activities. Plant Science, 210, 61-69. https://doi.org/10.1016/j.plantsci.2013.05.004
  12. Kondo, S., Tomiyama, H., Rodyoung, A., Okawa, K., Ohara, H., Sugaya, S., Terahara, N., & Hirai, N. (2014). Abscisic acid metabolism and anthocyanin synthesis in grape skin are affected by light emitting diode (LED) irradiation at night. Journal of Plant Physiology, 171(10), 823-829. https://doi.org/10.1016/j.jplph.2014.01.001
  13. Kopsell, D. A., & Sams, C. E. (2013). Increases in shoot tissue pigments, glucosinolates, and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes. Journal of the American Society for Horticultural Science, 138(1), 31-37. https://doi.org/10.21273/JASHS.138.1.31
  14. Lee, G. I., Kim, H. J., Kim, S. J., Lee, J. W., & Park, J. S. (2016). Increased growth by LED and accumulation of functional materials by fluorescence lamps in a hydroponics culture system for Angelica gigas. Protected Horticulture and Plant Factory, 25(1), 42-48. https://doi.org/10.12791/KSBEC.2016.25.1.42
  15. Li, Q., & Kubota, C. (2009). Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany, 67(1), 59-64. https://doi.org/10.1016/j.envexpbot.2009.06.011
  16. Lim, J. E., Cho, M. J., Yun, H. J., Ha, S. K., Lee, D. B., & Sung, J. K. (2016a). The Relation between Fertilization Practices and Functional Metabolites of Crops. Korean Journal of Soil Science and Fertilizer, 49(2), 168-180. https://doi.org/10.7745/KJSSF.2016.49.2.168
  17. Lim, J. E., Lee, S. B., Lee, Y. J., Cho, M. J., Yun, H. J., Lee, D. B., Hong, S. Y., & Sung, J. K. (2016b). Effects of Water Deficit and UV-B Radiation on Accumulation of Functional Metabolites in Crops. Korean Journal of Soil Science and Fertilizer, 49(5), 409-419. https://doi.org/10.7745/KJSSF.2016.49.5.409
  18. Liu, Y., Fang, S., Yang, W., Shang, X., & Fu, X. (2018). Light quality affects flavonoid production and related gene expression in Cyclocarya paliurus. Journal of Photochemistry and Photobiology B: Biology, 179, 66-73. https://doi.org/10.1016/j.jphotobiol.2018.01.002
  19. Martineau, V., Lefsrud, M., Naznin, M. T., & Kopsell, D. A. (2012). Comparison of light-emitting diode and high-pressure sodium light treatments for hydroponics growth of Boston lettuce. HortScience, 47(4), 477-482. https://doi.org/10.21273/HORTSCI.47.4.477
  20. Nascimento, L. B., Leal-Costa, M. V., Coutinho, M. A., Moreira, N. D. S., Lage, C. L., Barbi, N. D. S., Costa, S. S., & Tavares, E. S. (2013). Increased antioxidant activity and changes in phenolic profile of Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae) specimens grown under supplemental blue light. Photochemistry and Photobiology, 89(2), 391-399. https://doi.org/10.1111/php.12006
  21. Ouzounis, T., Frette, X., Ottosen, C. O., & Rosenqvist, E. (2015a). Spectral effects of LEDs on chlorophyll fluorescence and pigmentation in Phalaenopsis 'Vivien'and 'Purple Star'. Physiologia Plantarum, 154(2), 314-327. https://doi.org/10.1111/ppl.12300
  22. Ouzounis, T., Frette, X., Rosenqvist, E., & Ottosen, C. O. (2014). Spectral effects of supplementary lighting on the secondary metabolites in roses, chrysanthemums, and campanulas. Journal of Plant Physiology, 171(16), 1491-1499. https://doi.org/10.1016/j.jplph.2014.06.012
  23. Ouzounis, T., Rosenqvist, E., & Ottosen, C. O. (2015b). Spectral effects of artificial light on plant physiology and secondary metabolism: a review. HortScience, 50(8), 1128-1135. https://doi.org/10.21273/HORTSCI.50.8.1128
  24. Samuoliene, G., Brazaityte, A., Sirtautas, R., Virsile, A., Sakalauskaite, J., Sakalauskiene, S., & Duchovskis, P. (2013). LED illumination affects bioactive compounds in romaine baby leaf lettuce. Journal of the Science of Food and Agriculture, 93(13), 3286-3291. https://doi.org/10.1002/jsfa.6173
  25. Stutte, G. W., Edney, S., & Skerritt, T. (2009). Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. HortScience, 44(1), 79-82. https://doi.org/10.21273/HORTSCI.44.1.79
  26. Trouwborst, G., Oosterkamp, J., Hogewoning, S. W., Harbinson, J., & Van Ieperen, W. (2010). The responses of light interception, photosynthesis and fruit yield of cucumber to LED-lighting within the canopy. Physiologia Plantarum, 138(3), 289-300. https://doi.org/10.1111/j.1399-3054.2009.01333.x