DOI QR코드

DOI QR Code

주파수-파수 스펙트럼과 라돈변환을 이용한 희소 배열 기반 방위추정 기법 연구

Direction finding based on Radon transform in frequency-wavenumber domain with a sparse array

  • 최용화 (한국해양대학교 수중운동체특화연구센터) ;
  • 김동현 (한국해양과학기술원-한국해양대학교 해양과학기술전문대학원) ;
  • 김재수 (한국해양대학교 해양공학과)
  • 투고 : 2018.11.06
  • 심사 : 2019.03.27
  • 발행 : 2019.03.31

초록

배열의 설계주파수보다 높은 주파수의 표적신호가 수신되는 경우 공간 에일리어싱에 의해 빔형성에 모호성이 발생한다. 이를 극복하기 위해 Abadi가 차주파수 빔형성 기법을 제안하였다. 하지만 차주파수 빔형성 기법은 차주파수의 값에 따라 최소한의 대역폭이 필요한 제약조건이 있다. 본 논문에서는 주파수-파수 스펙트럼의 특성과 라돈변환을 이용하여 공간 에일리어싱이 발생하는 표적신호의 방위를 추정하는 기법을 제안한다. 제안된 기법은 대역을 가지는 신호의 주파수 대역 내에서 방위추정의 모호성은 발생하지 않고, 표적의 방위를 추정할 수 있다. 하지만 대역을 가지는 신호에만 적용이 가능한 제약조건이 있다. 광대역 신호에 대해 시뮬레이션을 수행하여 알고리즘을 구현하고, 이를 SAVEX15 (Shallow Water Acoustic Variability EXperiment 2015)의 딱총새우 소음신호를 이용하여 차주파수 빔형성 기법의 결과와 비교 검증하였다.

When an array receives a signal with a frequency higher than the design frequency, there is an ambiguity in beamforming due to spatial aliasing. In order to overcome this problem, Abadi proposed frequency-difference beamforming. However, there is a constraint that the minimum frequency bandwidth is required according to the value of the difference frequency. In this paper, we propose a method to find the direction of the target signal with spatial aliasing based on the frequency-wavenumber spectrum combined with Radon transform. The proposed method can estimate the direction of the target without ambiguities when the signal has nonnegligible bandwidth. We tested the algorithm by simulating a broadband signal and verified the results with the frequency-difference beamforming method using SAVEX15 (Shallow Water Acoustic Variability EXperiment 2015)'s shrimp noise data.

키워드

GOHHBH_2019_v38n2_168_f0001.png 이미지

Fig. 1. Direction of CW signals and geometry of VLA (Vertical Line Array).

GOHHBH_2019_v38n2_168_f0002.png 이미지

Fig. 2. Frequency-wavenumber spectrum from 3-directions CW signal.

GOHHBH_2019_v38n2_168_f0003.png 이미지

Fig. 3. LFM signal for free space simulation.

GOHHBH_2019_v38n2_168_f0004.png 이미지

Fig. 4. Frequency-wavenumber spectrum from 1-direction LFM signal.

GOHHBH_2019_v38n2_168_f0007.png 이미지

Fig. 7. Applying Radon transform to frequency wavenumber spectrum.

GOHHBH_2019_v38n2_168_f0008.png 이미지

Fig. 8. Frequency-wavenumber spectrum from 3-directions LFM signal.

GOHHBH_2019_v38n2_168_f0009.png 이미지

Fig. 9. The result of the Radon transform when the Radon domain is set to 2 kHz

GOHHBH_2019_v38n2_168_f0010.png 이미지

Fig. 10. Shrimp signal in SAVEX15.

GOHHBH_2019_v38n2_168_f0011.png 이미지

Fig. 11. Spectrogram of shrimp signal (ch #16, direct path).

GOHHBH_2019_v38n2_168_f0012.png 이미지

Fig. 12. The frequency-wavenumber spectrum of the shrimp signal.

GOHHBH_2019_v38n2_168_f0013.png 이미지

Fig. 13. The result of the Radon transform when the Radon domain is set to 20 kHz.

GOHHBH_2019_v38n2_168_f0014.png 이미지

Fig. 14. The result of CBF (upper) and FDBF (lower) in frequency domain.

GOHHBH_2019_v38n2_168_f0015.png 이미지

Fig. 15. Comparison among CBF, FDBF and the proposed algorithm.

GOHHBH_2019_v38n2_168_f0016.png 이미지

Fig. 16. Comparison of results of frequency-difference beamforming according to difference frequency components.

GOHHBH_2019_v38n2_168_f0017.png 이미지

Fig. 5. Beam pattern in 2 kHz.

GOHHBH_2019_v38n2_168_f0018.png 이미지

Fig. 6. Projection data.[15]

참고문헌

  1. M. J. Hinch, "Frequency-wavenumber array processing," J. Acoust. Soc. Am. 69, 732-737 (1981). https://doi.org/10.1121/1.385572
  2. S. H. Abadi, H. C. Hong, and D. R. Dawling, "Broadband sparse array blind-deconvolution using frequencydifference beamforming," J. Acoust. Soc. Am. 132, 3018-3029 (2012). https://doi.org/10.1121/1.4756920
  3. G. F. Edelmann and C. F. Gaumond, "Beamforming using compressive sensing," J. Acoust. Soc. Am. 130, EL232-EL237 (2011). https://doi.org/10.1121/1.3632046
  4. J. Capon, "High resolution frequency wavenumber spectrum analysis," Proc. IEEE, 57, 1408-1418 (1969). https://doi.org/10.1109/PROC.1969.7278
  5. J. Wang, H. Cetinkaya, and A. Yarovoy, "NUFFT based frequency-wavenumber domain focusing under MIMO array configurations," Radar Conference, 2014 IEEE. IEEE, 1-5 (2014).
  6. K. Liu, F. Liu, S. Wei, and G. Wang, "Target depth extraction based on the character of sound field vertical wavenumber spectrum," Ocean Acoustics (COA), 2016 IEEE/OES China. IEEE (2016).
  7. C. J. Geoga, C. L. Haley, A. R. Siegel, and M. Anitescu, "Frequency-wavenumber spectral analysis of spatio-temporal flows," J. Fluid Mechanics, 848, 545-559 (2018). https://doi.org/10.1017/jfm.2018.366
  8. J. Dmochowski, J. Benesty, and S. Affes, "On spatial aliasing in microphone arrays," IEEE Transactions on Signal Processing, 57, 1383-1395 (2009). https://doi.org/10.1109/TSP.2008.2010596
  9. F. Pinto, M. Kolundzija, and M. Vetterli, "Digital acoustics: processing wave fields in space and time using DSP tools," APSIPA Transactions on Signal and Information Processing, 3 (2014).
  10. S. R. Deans, The Radon Transform and Some of its Applications (Courier Corporation, New York, 2007), pp. 55-60.
  11. G. Beylkin, "Discrete radon transform," Acoustics, Speech and Signal Process., IEEE Trans. 35, 162-172 (2003). https://doi.org/10.1109/TASSP.1987.1165108
  12. D. Y. Park and H. Yoo, "CT Reconstruction using Discrete Cosine Transform with non-zero DC Components," Trans. Korean. Inst. Elect. Eng. 63, 1001-1007 (2014). https://doi.org/10.5370/KIEE.2014.63.7.1001
  13. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE press, New York, 1988), pp. 28-46.
  14. E. Masry, "The estimation of the frequency‐wavenumber spectrum using random acoustic arrays-Part II. A class of consistent estimators," J. Acoust. Soc. Am. 76, 1123-1131 (1984). https://doi.org/10.1121/1.391404
  15. D. Rouseff and L. M. Zurk, "Striation-based beamforming for estimating the waveguide invariant with passive sonar," J. Acoust. Soc. Am. 130, EL76-EL81 (2011). https://doi.org/10.1121/1.3606571
  16. A. S. Douglass, H. C. Song, and D. R. Dowling, "Performance comparisons of frequency-difference and conventional beamforming," J. Acoust. Soc. Am. 142, 1663-1673 (2011). https://doi.org/10.1121/1.5003787