DOI QR코드

DOI QR Code

충격력 응답신호를 이용한 비파괴 압축강도 산정에 관한 기초연구

A Pilot Study on Nondestructive Assessment of Compressive Strength Using Impact Force Response Signal

  • Son, Moorak (Department of Civil Engineering, Daegu University) ;
  • Choi, Yoonseo (Department of Civil Engineering, Daegu University)
  • 투고 : 2019.01.14
  • 심사 : 2019.03.25
  • 발행 : 2019.04.01

초록

본 논문은 건설재료(암석, 콘크리트, 목재 등) 등의 압축강도를 비파괴적으로 산정하기 위하여 재료타격 시 발생하는 충격력에 대한 응답신호를 모두 측정하고 이를 누적한 전체 충격력 신호에너지의 이용성 및 가능성에 관해 기초연구를 수행하고 그 결과를 제시하는 것이다. 본 연구에서는 이를 위해서 충격 및 측정장치를 고안하였고 이를 이용하여 측정대상물을 회전 자유낙하에 의해 초기 타격토록하고 이후 반발작용에 의한 반복타격이 소멸될 때까지 발생할 수 있도록 하였다. 본 연구에서는 서로 다른 강도를 가지는 목재와 암석시편에 대하여 충격력실험을 실시하고 발생신호를 측정하였다. 시편별 산정된 전체 충격력 신호에너지는 직접압축강도시험을 통한 시편별 압축강도와 상호 비교하였다. 비교결과, 충격력 응답신호를 통해 산정된 전체 충격력 신호에너지는 시편의 직접압축강도와 직접적인 관계가 있다는 것을 확인하였으며, 이를 통해 다양한 건설재료의 압축강도는 재료타격 시 발생하는 충격력 응답신호로부터 산정된 전체 충격력 신호에너지를 이용하여 비파괴적으로 산정할 수 있음을 알 수 있었다.

This paper is to provide the results of a pilot study of the usability and possibility of impact force response signal induced from impacting an object for the assessment of compressive strength of various materials (rock, concrete, wood, etc.) nondestructively. For this study, a device was devised for impacting an object and measuring the impact force. The impact was carried out by an initial rotating free falling impact and following repetitive impacts from the rebound action which eventually disappears. Wood and rock test specimens for different strengths were tested and an impact force response signal was measured for each test specimen. The total impact force signal energy which is assessed from integrating the impact force response signal was compared with the directly measured compressive strength for each specimen. The comparison showed that the total impact force signal energy has a direct relationship with the directly measured compressive strength and the results clearly indicated that the compressive strength of construction materials can be assessed nondestructively using total impact force signal energy which is assessed from integrating the impact force response signal induced from impacting an object.

키워드

HJHGC7_2019_v20n4_5_f0001.png 이미지

Fig. 1. Test specimens (pine tree, shale, and granite) used in this study

HJHGC7_2019_v20n4_5_f0002.png 이미지

Fig. 2. Measurement of impact force signal response

HJHGC7_2019_v20n4_5_f0003.png 이미지

Fig. 3. Measured impact signals of test specimens in time domain (X-axis: time, Y-axis: impact force)

HJHGC7_2019_v20n4_5_f0004.png 이미지

Fig. 4. Schematic view of total impact force signal energy calculation

HJHGC7_2019_v20n4_5_f0005.png 이미지

Fig. 5. Comparison of total impact force signal energy for different materials

HJHGC7_2019_v20n4_5_f0006.png 이미지

Fig. 6. Uniaxial direct compressive test machine

HJHGC7_2019_v20n4_5_f0007.png 이미지

Fig. 7. Comparison of total impact force signal energy and measured direct compressive strength

Table 1. Measured compressive strength

HJHGC7_2019_v20n4_5_t0001.png 이미지

참고문헌

  1. ASTM C805-13 (2013), Standard test method for rebound number of hardened concrete, American Society for Testing and Materials, West Conshohocken, PA.
  2. Carino, N. J. and Sansalone, M. (1984), Pulse-echo method for flaw detection in concrete, NBS Technical Note 1199, U.S. Dept. of Commerce/National Bureau of Standards 34.
  3. FHWA (1997), Guide to nondestructive testing of concrete, Federal Highway Administration, FHWA-SA-97-105 written by G.I. Crawford, pp. 1-58.
  4. IAEA (2002), Guidebook on non-destructive testing of concrete structures, International Atomic Energy Agency, Training course series No. 17, Vienna, Austria, pp. 1-231.
  5. Naik, T. R. and Malhotra, V. M. (1991), The ultra-sonic pulse velocity method, Handbook on Nondestructive Testing of Concrete, CRC Press, Inc., Boca Raton, FL, pp. 169-202.
  6. Patil, N. R. and Patil, J. R. (2008), Non-destructive testing (NDT) advantages and limitations, SRES College of Engineering, Kopargaon, Maharashtra - 423 603, pp. 71-78.