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Abstract. In this paper, we provide results for the search number of the Cartesian prod-

uct of graphs. We consider graphs on opposing ends of the spectrum: paths and cliques.

Our main result determines the pathwidth of the product of cliques and provides a lower

bound for the search number of the product of cliques. A consequence of this result is a

bound for the search number of the product of arbitrary graphs G and H based on their

respective clique numbers.

1. Introduction

Imagine that a security system has indicated the existence of a camouflaged,
mobile intruder in some physical or computer network. How can a set of guards,
or searchers, locate this intruder? Such a question can be considered using a graph
searching model. In this type of model, an intruder can, at any time, move infinitely
fast from vertex u to vertex v along any path that contains no searchers. To search
a graph, it is necessary to formulate and execute a search strategy: a sequence of
actions designed so that, upon their completion, all edges (and therefore vertices)
of the graph have been cleared of the invisible intruder. In such strategies, three
actions are permitted and each action may occur multiple times:

• place a searcher on a vertex;

• move a single searcher along an edge uv, starting at u and ending at v;
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• remove a searcher from a vertex.

An edge uv can be cleared of the invisible intruder in one of two ways: (i) at
least two searchers are located at vertex u, and one of these searchers traverses uv
to vertex v; (ii) at least one searcher is located at u, all edges incident with u, other
than uv, have already been cleared of the intruder, and the searcher traverses the
edge uv to vertex v. Naturally, the fundamental question is: what is the fewest
number of searchers for which a search strategy exists? Using the terminology of
[21], we call this parameter the search number of G and denote it by s(G). The
parameter has also been referred to as the edge-search number es(G) (see [10], for
example) and the sweep number sw(G) (see [1], for example). In the literature,
searching has been related to pebbling and thus to computer memory usage; it also
has applications to assuring privacy when using bugged channels, to VLSI circuit
design, and to clearing networks with brushes (see [1, 8, 9, 12, 15, 21]). The field
of graph searching is rapidly expanding and in recent years new models, motivated
by applications and foundational issues in computer science, have appeared.

Although the associated decision problem is NP -complete [14], the search num-
ber is known for many classes of graphs and bounds exist for graphs with particular
properties (see [1, 5, 21], for example). However, very little is known about the
search number of Cartesian products. The Cartesian product of graphs G and H,
denoted G�H, has vertex set V (G�H) = V (G) × V (H), and (u1, v1)(u2, v2) ∈
E(G�H) if and only if (1) u1u2 ∈ E(G) and v1 = v2, or (2) u1 = u2 and
v1v2 ∈ E(H). In 1987, Tos̆ić [20] provided an upper bound for the search num-
ber of G�H based on the respective cardinalities and search numbers of G and H.
In 1992, Kinnersley [11] showed pw(G) = vs(G), where pw(G) denotes the path-
width (defined below) and vs(G) the vertex separation number of a graph G. In
1994, Ellis et al. [6] showed vs(G) ≤ s(G) ≤ vs(G) + 2. For the Cartesian product
G�H, these results imply

(1.1) pw(G�H) ≤ s(G�H) ≤ pw(G�H) + 2.

However, as the associated decision problem for pathwidth is NP-complete, the
lower bound is not necessarily useful in practice.

In this paper, we consider input graphs at opposing ends of the spectrum: paths
and cliques. In Section 2, we determine s(Pm �Pn) and s(Km �Pn). In Section 3,
we determine pw(Km �Kn) and exploit the relationship between the search number
and pathwidth to show

(1.2) s(G�H) ≥ s(Km �Kn) ≥ pw(Km �Kn) =

{
m
2 n+ m

2 − 1 if m even

dm2 en− 1 if m odd

where m, n are the clique numbers of G, H, respectively. Inequality (1.2) is given by
Corollary 3.12 and results from applying Corollary 3.1, Lemma 3.2, and Corollary
3.10.

To conclude this section, we define the pathwidth of a graph G and state a
simple, but useful, lemma.
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Definition 1.1. A path decomposition of a graph G is a sequence of subsets of
vertices (B1, B2, . . . , Br) such that

(i)
⋃

1≤i≤r Bi = V (G);

(ii) For all edges vw ∈ E(G), ∃ i ∈ {1, 2, . . . , r} with v ∈ Bi and w ∈ Bi;

(iii) For all i, j, k ∈ {1, 2, . . . , r}, if i ≤ j ≤ k then Bi ∩Bk ⊆ Bj .

The width of a path decomposition (B1, B2, . . . , Br) is max1≤i≤r |Bi| − 1, and the
pathwidth of G, denoted pw(G), is the minimum width over all possible path de-
compositions of G.

See the survey [2] for more on pathwidth; the convention is to refer to subsets
B1, B2, . . . , Br as bags. It can easily be seen that an equivalent statement of (iii) is:

Fact 1.2. For each v ∈ V (G), the set of bags {Bi | v ∈ Bi and 1 ≤ i ≤ r} must
form a subpath in the decomposition;

i.e. the indices of the set of bags are an interval. (The important point here is that
the subpath is, by definition, connected.)

To avoid confusion between a path of vertices in a graph and a path of bags
in a path decomposition, we will refer to a path of bags as a bag-path. The next
result will be used in Section 3 with respect to products of cliques. Though the
original results are stated for tree decompositions, they obviously apply to path
decompositions. A short proof of the result for tree decompositions exists in [4],
but the authors state that earlier proofs exist in [3, 18].

Lemma 1.3.([4]) Consider a path decomposition (B1, B2, . . . , Br) of graph G, for
some positive integer r. Let W ⊆ V (G) be a clique in G. Then W ⊆ Bi, for some
1 ≤ i ≤ r.

2. Search Number of Pm �Pn and Pm �Kn

Ellis and Warren [7] proved that for m ≥ n, pw(Pm �Pn) = n which by In-
equality (1.1) implies s(Pm �Pn) ∈ {n, n+ 1, n+ 2}. In this section, we determine
s(Pm �Pn) exactly. The notion of a search strategy was described in Section 1
as a sequence of actions designed so that once completed, all edges (and therefore
vertices) of the graph have been cleared of the invisible intruder. We note that dur-
ing the search strategy, recontamination of cleared edges may occur. However, if a
search strategy exists for a connected graph, once every searcher has been placed
on the graph, only the action of moving a searcher along an edge is required for
the remainder of the search strategy (i.e. instead of removing a searcher from a
vertex x and placing it on a vertex y, the searcher could move along a path from
x to y). Thus, if a search strategy exists for a connected graph, then the graph
can be cleared by placing the searchers at a set of vertices and then, at each time
step, moving one searcher along an edge. This approach is sometimes called internal
searching in the literature and we use it in the proof of Lemma 2.1. Additionally,
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at a given time step, any edge that is not clear is considered to be dirty and, if it
can be recontaminated, then it is recontaminated instantly.

Lemma 2.1. For n ≥ 3, s(Pn �Pn) ≥ n+ 1.

Proof. Let n ≥ 3 and label the vertices of Pn �Pn as vi,j for 1 ≤ i, j ≤ n. For a con-
tradiction, suppose there exists a search strategy for Pn �Pn that uses n searchers.
Let Ri be the subgraph induced by {vi,1, vi,2, . . . , vi,n} and Cj be the subgraph
induced by {v1,j , v2,j , . . . , vn,j}; we informally refer to the subgraphs Ri and Cj as
row i and column j, respectively. Let t be the last time step for which

(i) at the end of step t− 1, at least one edge of each of Ri and Ci is dirty for all
i ∈ [n], and

(ii) at the end of step t, every edge of Ck is clear for some k ∈ [n]. (Note that
once Ck is cleared, it never becomes dirty again.)

Certainly there must be such t in order for there to exist a search strategy of Pn �Pn.
Suppose that for some x ∈ [n], Rx does not contain a searcher at the end of step
t. Then as Rx contains a dirty edge, it is recontaminated, and so the edge of Cx
incident with vx,k is too, contradicting (i). Therefore, at the end of step t, every
row contains at least one searcher.

From (i) and (ii), we conclude that a searcher moves wlog from vi+1,k to vi,k
during step t for some i ∈ [n − 1]. If i > 1, a searcher must be located at vi,k
immediately prior to step t because edge (vi,k, vi+1,k) was dirty but edge (vi−1,k, vi,k)
was clean. Therefore, at the end of step t, there are two searchers located at vi,k
and all other rows contain at least one searcher: s(Pn �Pn) ≥ n + 1. To complete
the proof, we assume i = 1 and let t′ > t be the time step during which a second
row or column is cleared.

Claim 1: After step t and before step t′, no searcher can move from one row to
another.

Since only n searchers are available, there is exactly one searcher in each row
at the end of step t. Suppose that after step t and before step t′, a searcher moves
from row j to row j + 1 or j − 1. Since Rj contains a dirty edge (by (i) and (ii))
but no searcher, any clear edges in Rj become recontaminated along with the two
edges of Ck incident with vj,k ∈ Rj ∩ Ck. Claim 1 has been proven.

Claim 2: At the end of step t, every edge in R1 is dirty.

During step t, a searcher moves from vk,2 to vk,1 and at the end of step t, there
is exactly one searcher in each row. Then at the end of step t − 1, there is no
searcher in R1 (else there are n + 1 searchers) and, by (i), edge (v1,kv2,k) is dirty.
Thus, every edge in R1 is dirty at the end of step t− 1 and also at step t. Claim 2
has been proven.

To conclude the proof, we consider two cases: k ∈ {2, 3, . . . , n − 1} and k ∈
{1, n}.
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Case 1: Suppose k ∈ {2, 3, . . . , n− 1}. For j ∈ [n], let sj be the searcher in Rj at
the end of step t. At the end of step t, s1 is located at v1,k and by Claim 2, every
edge of R1 is dirty. Since every edge in R1 is dirty, every vertex of R2\{v2,k} is
incident with a dirty edge. As there is only one searcher in R2, s2 must be located
at v2,k (otherwise Ck is recontaminated via v2,k). By repeating this argument, we
find that si must be located at vj,k for each j ∈ [n]. Then each searcher is located
at a vertex incident with at least two dirty edges, and so no searcher can move at
step t + 1 without said move resulting in recontamination of at least two edges of
Ck. Therefore, s(Pn �Pn) ≥ n+ 1.

Case 2: Suppose k ∈ {1, n} and wlog assume k = 1. Then during step t, searcher
s1 moves from v2,1 to v1,1. By Claim 2, at the end of step t, edge (v1,2, v1,3) is dirty.
Then adjacent edge (v1,2, v2,2) is also dirty at the end of step t−1. Thus, after step
t and before step t′, s1 may move to v1,2, but cannot move elsewhere by Claim 1
(and because v1,2 has at least two incident dirty edges). Thus, at the end of step
t′ − 1, s1 is located at either v1,1 or v1,2 and edge (v1,2, v2,2) is dirty. Similarly,
at the end of step t′ − 1 for j ∈ {2, 3, . . . , n − 2}, if sj is located at a vertex of
{vj,1, vj,2, . . . , vj,i} then edges (vj,j , vj,j+1) and (vj,j , vj−1,j) are dirty. To prevent
recontamination of the edges in C1, searcher sj+1 must be located at a vertex of
{vj+1,1, vj+1,2, . . . , vj+1,j+1} at the end of step t′ − 1.

Note that searcher sn cannot be located at vn,n at the end of step t′−1; otherwise
Rn would be clear before step t′. Thus, sn is located on one of {v1,n, v2,n, . . . , vn−1,n}
at the end of step t′ − 1. As no searcher is located in Cn at the end of step t′ − 1
and Cn contains at least one dirty edge, every edge of Cn is dirty at the end of step
t′ − 1.

For Rj to be clear by the end of step t′, some searcher sj must move from vj,n−1
to vj,n. Thus j = n− 1 or j = n since, for j < n− 1, sj cannot be located at vj,n−1
at step t′−1. Since edges (vn−1,n−1, vn−2,n−1) and (vn−1,n−1, vn−1,n) are both dirty
at step t′ − 1, we note that j 6= n− 1 (otherwise, edges of C1 are recontaminated).
Therefore, at step t′, sn must move from vn,n−1 to vn,n, and Rn is clear at the end
of step t′. This implies that at the end of step t′ − 1, searcher sj must be located
at vj,j , for 2 ≤ j ≤ n− 1 (otherwise, edges of C1 are recontaminated). Recall that
(vj,j , vj−1,j), (vj,j , vj,j+1) are both dirty for j ∈ {2, 3, . . . , n− 1} at the end of step
t′ − 1 (and therefore t′). So none of s2, s3, . . . , sn can move at step t′ + 1 without
recontamination of some edges of C1.

Note that sn could move from vn,n to vn−1,n at step t′ + 1 (or t′ + 2). How-
ever, this results in sn becoming incident with two dirty edges (vn−1,n−1, vn−1,n),
(vn−2,n, vn−1,n). If s1 is located at v1,1, then s1 can now move to v1,2 at step t′ + 1
(or t′ + 2). However, this results in s1 being incident with two dirty edges and
consequently, all searchers are incident with at least two dirty edges. So no searcher
can move after step t′ + 2 without recontaminating C1.

Therefore, s(Pn �Pn) ≥ n+ 1. 2

Lemma 2.2. For n ≥ 3 and a connected finite graph G, s(G�Pn) ≤ |V (G|+ 1.

Proof. Let G be a connected finite graph and label the vertex set of G�Pn as
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vi,j , for 1 ≤ i ≤ |V (G)| and 1 ≤ j ≤ n. Place one searcher on each vertex of
{vi,1 : 1 ≤ i ≤ |V (G)|}; we will refer to these searchers as “the first |V (G)|
searchers”. The |V (G)|+ 1th searcher clears the edges of the subgraph induced by
{vi,1 : 1 ≤ i ≤ |V (G)|}. Then the first |V (G)| searchers move from vi,1 to vi,2 for
each 1 ≤ i ≤ |V (G)| and the |V (G)|+ 1th searcher clears the edges of the subgraph
induced by {vi,2 : 1 ≤ i ≤ |V (G)|}. Continuing in this manner, we find |V (G)|+ 1
searchers sufficient to clear G�Kn. 2

In [21], it was observed that if H is a minor of G, then s(G) ≥ s(H). Since Km is
a minor of Km �Pn, we observe s(Km �Pn) ≥ s(Km) = m+1. Let α = min{m,n}.
As Pα �Pα is a minor of Pm �Pn, we observe s(Pm �Pn) ≥ s(Pα �Pα) = α + 1 =
min{m,n} + 1 by Lemma 2.1. Applying Lemma 2.2 to achieve the upper bounds,
the following theorem is immediate.

Theorem 2.3. For m,n ≥ 3, s(Pm �Pn) = min{m,n} + 1 and s(Km �Pn) =
m+ 1.

3. Pathwidth of the Product of Cliques

With respect to the search number of products of cliques, it was shown in [21]
that s(Kn �K2) = n+ 1 for n ≥ 3 and that, for n ≥ 1, m ≥ 2,

(3.1) s(Km �Kn) ≤ n(m− 1) + 1.

In this section, we improve the above bound by a factor of a half. To do this,
we consider the pathwidth of Km �Kn. Robertson and Seymour introduced the
concepts of pathwidth [16] and treewidth [17] which played a fundamental role in
their work on graph minors. Pathwidth is of interest to researchers because many
intractable problems can be solved efficiently on graphs of bounded pathwidth.

Let ω(G), ω(H) denote the clique numbers of G, H, respectively. It was shown
in [21] that s(G) ≥ s(H) when H is a minor of G; thus the following corollary is
immediate.

Corollary 3.1. For any graphs G and H,

(a) s(G�H) ≥ max{s(G�Kω(H)), s(H �Kω(G))}, and

(b) s(G�H) ≥ s(Kω(G) �Kω(H)).

Corollary 3.1 with Inequality (1.1) yields the following relationship with path-
width.

Lemma 3.2.

(a) For any graphs G and H, s(G�H) ≥ pw(Kω(G) �Kω(H)).

(b) For n ≥ 1, m ≥ 2, pw(Km �Kn) ≤ s(Km �Kn) ≤ pw(Km �Kn) + 2.
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For Lemma 3.2(a) to be useful, pw(Kω(G) �Kω(H)) must be known. The re-
mainder of this section is devoted to proving that for n ≥ m ≥ 2,

pw(Km �Kn) =

{
m
2 n+ m

2 − 1 if m even

dm2 en− 1 if m odd.

We first note that the treewidth of the product of two cliques of order n ≥ 3 was

determined in [13]: tw(Kn �Kn) = n2

2 + n
2 − 1. As treewidth forms a lower bound

for pathwidth, the result of [13] provides a lower bound for pw(Kn �Kn), for n ≥ 3.
Seymour and Thomas [19] showed that construction of a bramble of size k proves
tw(G) ≥ k − 1 and, to determine the lower bound for tw(Kn �Kn), Lucena [13]

constructed a bramble of order n2

2 + n
2 . Although it seems a generalization of the

bramble construction in [13] could be used to obtain a lower bound for tw(Km �Kn),
this would still only yield a lower bound for pw(Km �Kn). Instead, we consider a
direct approach to providing a lower bound for pw(Km �Kn), without introducing
brambles. In Section 3.2, we prove the upper bound for pw(Km �Kn) and in Section
3.3, we state conclusions and implications of the upper and lower bounds.

The following notation is used in the remainder of this section: label the vertex
set of Km �Kn as vi,j for 1 ≤ i ≤ m, 1 ≤ j ≤ n. For any i ∈ [m], the subgraph
of Km �Kn induced by vertices {v1,i, v2,i, . . . , vm,i} is called an m-clique as it is a
subgraph isomorphic to Km. Similarly, for any j ∈ [n], the subgraph of Km �Kn

induced by vertices {vj,1, vj,2, . . . , vj,n} is called an n-clique.

3.1. Lower Bound for the Pathwidth of the Product of Cliques

Lemma 3.3. For n ≥ 2, pw(K2 �Kn) ≥ n.

Proof. For a contradiction, suppose (B1, B2, . . . , Br) is a path decomposition where
max1≤i≤r |Bi| ≤ n for some n ≥ 2. By Lemma 1.3, there exists i ∈ [r], j ∈ [r] such
that bag Bi contains the n-clique {v1,1, v1,2, . . . , v1,n} and Bj contains the n-clique
{v2,1, v2,2, . . . , v2,n}. Certainly, i 6= j (else |Bi| ≥ 2n), so wlog assume i < j.

Let Bx be the lowest-indexed bag that contains a pair of vertices of the form
v1,α, v2,α, for any α ∈ [n]. Clearly i < x < j (else one of Bi, Bj contains n + 1
vertices). As Bx contains at most n − 2 vertices other than v1,α, v2,α, we observe
v1,β /∈ Bx, for some β ∈ [n]. Therefore, the pair v1,β , v2,β must appear together
in a bag with higher index than Bx (by Definition 1.1(ii), v1,β , v2,β must appear in
some bag together). But then we do not have a path decomposition as the set of
bags containing v1,β does not form a bag-path: v1,β ∈ Bi, v1,β /∈ Bx, and vi,β is in
a bag with higher index than Bx. 2

We next prove a simple, but useful, lemma.

Lemma 3.4. Let S be a set containing m ≥ 3 elements. Consider an ordered parti-
tion of S into at least three non-empty subsets, each of which contains strictly fewer
than dm2 e elements, and label the subsets of the ordered partition S1, S2, . . . , Sr, for
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some integer r ≥ 3. Then, for some t ∈ N,

1 ≤ |S1 ∪S2 ∪ . . . St−1| ≤
⌊m

2

⌋
, 1 ≤ |St| ≤

⌊m
2

⌋
, 1 ≤ |St+1 ∪St+2 ∪ . . . Sr| ≤

⌊m
2

⌋
.

Proof. Let t be the smallest integer for which |S1 ∪ S2 ∪ · · · ∪ St| > bm2 c. Then
1 ≤ |S1 ∪ S2 ∪ · · · ∪ St−1| ≤ bm2 c. By the hypothesis, 1 ≤ |St| < dm2 e. As a result,
1 ≤ |St| ≤ bm2 c as desired.

As |S1∪S2∪· · ·∪St| > bm2 c, we know |St+1∪St+2∪· · ·∪Sr| ≤ bm2 c. It remains
to show that 1 ≤ |St+1 ∪ St+2 ∪ · · · ∪ Sr|. If m is even, then |St| ≤ m

2 − 1 < dm2 e,
so |S1 ∪ S2 ∪ · · · ∪ St| ≤ m

2 + m
2 − 1 < m. If m is odd, then |St| ≤ bm2 c, so

|S1 ∪ S2 ∪ · · · ∪ St| ≤ bm2 c+ bm2 c < m. Thus, 1 ≤ |St+1 ∪ St+2 ∪ · · · ∪ Sr|. 2

In the remaining 2 proofs of this subsection, we will repeatedly apply the result
of Lemma 1.3 to observe that in a path decomposition, every n-clique (and m-clique)
must be contained in some bag.

Theorem 3.5. For n ≥ m ≥ 4, pw(Km �Kn) ≥ dm2 en− 1.

Proof. For a contradiction, suppose (B1, . . . , Br) is a path decomposition where
max1≤i≤r |Bi| ≤ dm2 en − 1. Let S be the set of m n-cliques in Km �Kn. Bags
B1, B2, . . . , Br form an ordered partition of S into non-empty subsets, each bag con-
taining fewer than dm2 e n-cliques (as each bag contains at most dm2 en− 1 vertices).
By Lemma 3.4, X = B1 ∪B2 ∪ · · · ∪Bt−1 contains i n-cliques, for some i ∈ [bm2 c],
B = Bt contains j n-cliques, for some j ∈ [bm2 c], and Y = Bt+1 ∪ Bt+2 ∪ · · · ∪ Br
contains k n-cliques, for some k ∈ [bm2 c].

Suppose wlog that i ≥ k and pair each n-clique in Y with a distinct n-clique in
X. For instance, if {vb,1, vb,2, . . . , vb,n} is an n-clique in Y , it is paired with some
n-clique {va,1, va,2, . . . , va,n} in X. Every bag on the bag-path between X and Y
must contain at least one of va,`, vb,` for each ` ∈ [n] (otherwise we contradict Fact
1.2 (or equivalently Definition 1.1(iii))). Since there are k pairings, there are at
least kn vertices in B in addition to the jn vertices from the j n-cliques in B. So,
|B| ≥ (j + k)n = (m − i)n as i + j + k = m (the number of n-cliques). Note that
(m− i)n ≤ |B| ≤ dm2 en− 1 (the upper bound being the initial hypothesis) implies
i > bm2 c, which contradicts the fact that i ∈ [bm2 c]. Therefore, B contains at least
dm2 en vertices and pw(Km �Kn) ≥ dm2 en− 1. 2

Given a minimum width path decomposition (B1, B2, . . . , Br) of graph G, the
length of the decomposition is r. The next result will be used to increase the lower
bound of pw(Km �Kn) for m even.

Lemma 3.6. For even m and n ≥ m ≥ 4, suppose pw(Km �Kn) ≤ m
2 n + m

2 − 2
and of the path decompositions of minimum width, let (B1, B2, . . . , Br) be a de-
composition of minimum length. Then for each i ∈ [r], Bi contains fewer than m

2
n-cliques.

Proof. For m even and n ≥ m ≥ 4, let (B1, B2, . . . , Br) be a minimum length
path decomposition for which max1≤i≤r |Bi| ≤ m

2 n+ m
2 − 1. We first observe that
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every bag in the decomposition contains at most m
2 n-cliques; otherwise, some bag

contains at least (m2 + 1)n = m
2 n + n ≥ m

2 n + m > m
2 n + m

2 − 1 vertices, which
yields a contradiction.

Next, assume that for some j ∈ [r], bag Bj contains exactly m
2 n-cliques. First,

suppose there exists i < j < k such that bags Bi, Bk each contain at least one
n-clique that does not appear in Bj . Let {vα,1, vα,2, . . . , vα,n} be such an n-clique
in Bi and {vβ,1, vβ,2, . . . , vβ,n} such an n-clique in Bk. Then, for each pair vα,s, vβ,s
with s ∈ [n], at least one vertex of the pair must be in Bj (else we contradict
Definition 1.1(ii) and (iii)). Then |Bj | ≥ m

2 n + n > m
2 n + m

2 − 1 which yields a
contradiction.

Thus, wlog no bag of lower index than j contains an n-clique not already con-
tained in Bj . However, then no bag of lower index than j contains an m-clique not
already contained in Bj . Otherwise, for some x < j, Bx contains an m-clique and
each of these m vertices must appear in a bag as part of its associated n-clique.
Thus, each of the m vertices (of the m-clique of Bx) must appear in Bj . Since
exactly m

2 of them already appear in Bj in an n-clique, this means |Bj | ≥ m
2 n+ m

2 ,
which yields a contradiction.

Thus Bj contains m
2 n-cliques, and no lower-indexed bag contains an n-clique

or an m-clique. As each vertex must appear in a bag with its associated m-clique,
every vertex in Bj must appear in Bj+1. We now have a contradiction as the
minimum width decomposition is not of minimum length. Consequently, every bag
in the decomposition contains strictly fewer than m

2 n-cliques. 2

Theorem 3.7. For n ≥ m ≥ 4 and m even, pw(Km �Kn) ≥ m
2 n+ m

2 − 1.

Proof. Suppose n ≥ m ≥ 4 and m is even. For a contradiction, let (B1, B2, . . . , Br)
be a minimum length path decomposition for which max1≤i≤r |Bi| ≤ m

2 n+ m
2 − 1.

As a result of Lemma 3.6, we can apply Lemma 3.4; let S be the set of m n-cliques
in Km �Kn. Let X = B1 ∪ B2 ∪ · · · ∪ Bt−1 contain i n-cliques for some i ∈ [m2 ],
B = Bt contain j n-cliques for some j ∈ [m2 ], and Y = Bt+1 ∪ Bt+2 ∪ · · · ∪ Br
contain k n-cliques for some k ∈ [m2 ].

We now show that X and Y each must contain at least one m-clique that does
not appear in B. To see this, suppose that X contains no m-clique: all m-cliques
appear in B∪Y . As each vertex must appear in a bag with its associated m-clique,
it is clear that any vertex of X must also appear in B (else we contradict Definition
1.1(iii)). Then X is unnecessary in the path decomposition, which contradicts the
assumption of having a minimum width path decomposition that is of minimum
length. Clearly the same argument ensures X does not contain all the m-cliques.
Consequently, X, Y each contain at least one m-clique.

Suppose wlog that i ≥ k. We pair the k n-cliques in Y with k n-cliques in
X. If {va,1, va,2, . . . , va,n} in X is paired with {vb,1, vb,2, . . . , vb,n} in Y , then B
must contain at least one of va,`, vb,`, for each ` ∈ [n] (else we contradict Definition
1.1(iii)). Thus, |B| ≥ (j + k)n.

Recall that X, Y must each contain at least one m-clique that does not appear
in B; let {v1,x, v2,x, . . . , vm,x} be such an m-clique in X and {v1,y, v2,y, . . . , vm,y}
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such an m-clique in Y . At least one vertex from each pair v`,x, v`,y, for ` ∈ [m],
must appear in B, and at most j + k of these m vertices already appear in B.
This leaves an additional m − (j + k) = i vertices. Thus, |B| ≥ (j + k)n + i =
(m− i)n+ i = mn− in+ i ≥ m

2 n+ m
2 , as 1 ≤ i ≤ m

2 . However, this contradicts the
initial assumption pw(Km �Kn) ≤ m

2 n+ m
2 − 2. 2

3.2. Upper Bound for the Pathwidth of the Product of Cliques

We now provide upper bounds for the pathwidth of the product of cliques.
Theorem 3.8 provides a general upper bound and Theorem 3.9 provides an improved
upper bound for odd m. To illustrate the decomposition used in Theorem 3.8, we
refer the reader to Figure 1, in which the bags B1, B2, B3, and Bn are illustrated.
We note that for simplicity, the edges of Km �Kn have been omitted in Figures 1, 2,
and 3.

vbm
2 c,1

vbm
2 c+1,1

vm,1

v1,1

v2,1

v1,nv1,2 v1,3
<latexit sha1_base64="WXwfZURW2bOP5dl4A5kYupsZZmo=">AAAB8HicbZDLTgIxFIbP4A3xhrp00wgmLgyZgYUuiW5cYiIXAxPSKR1oaDuTtkNCJjyFGxca49bHcefbWGAWCv5Jky//OSc95w9izrRx3W8nt7G5tb2T3y3s7R8cHhWPT1o6ShShTRLxSHUCrClnkjYNM5x2YkWxCDhtB+O7eb09oUqzSD6aaUx9gYeShYxgY62n8qSfele1WblfLLkVdyG0Dl4GJcjU6Be/eoOIJIJKQzjWuuu5sfFTrAwjnM4KvUTTGJMxHtKuRYkF1X66WHiGLqwzQGGk7JMGLdzfEykWWk9FYDsFNiO9Wpub/9W6iQlv/JTJODFUkuVHYcKRidD8ejRgihLDpxYwUczuisgIK0yMzahgQ/BWT16HVrXiWX6oluq3WRx5OINzuAQPrqEO99CAJhAQ8Ayv8OYo58V5dz6WrTknmzmFP3I+fwBkmI93</latexit><latexit sha1_base64="WXwfZURW2bOP5dl4A5kYupsZZmo=">AAAB8HicbZDLTgIxFIbP4A3xhrp00wgmLgyZgYUuiW5cYiIXAxPSKR1oaDuTtkNCJjyFGxca49bHcefbWGAWCv5Jky//OSc95w9izrRx3W8nt7G5tb2T3y3s7R8cHhWPT1o6ShShTRLxSHUCrClnkjYNM5x2YkWxCDhtB+O7eb09oUqzSD6aaUx9gYeShYxgY62n8qSfele1WblfLLkVdyG0Dl4GJcjU6Be/eoOIJIJKQzjWuuu5sfFTrAwjnM4KvUTTGJMxHtKuRYkF1X66WHiGLqwzQGGk7JMGLdzfEykWWk9FYDsFNiO9Wpub/9W6iQlv/JTJODFUkuVHYcKRidD8ejRgihLDpxYwUczuisgIK0yMzahgQ/BWT16HVrXiWX6oluq3WRx5OINzuAQPrqEO99CAJhAQ8Ayv8OYo58V5dz6WrTknmzmFP3I+fwBkmI93</latexit><latexit sha1_base64="WXwfZURW2bOP5dl4A5kYupsZZmo=">AAAB8HicbZDLTgIxFIbP4A3xhrp00wgmLgyZgYUuiW5cYiIXAxPSKR1oaDuTtkNCJjyFGxca49bHcefbWGAWCv5Jky//OSc95w9izrRx3W8nt7G5tb2T3y3s7R8cHhWPT1o6ShShTRLxSHUCrClnkjYNM5x2YkWxCDhtB+O7eb09oUqzSD6aaUx9gYeShYxgY62n8qSfele1WblfLLkVdyG0Dl4GJcjU6Be/eoOIJIJKQzjWuuu5sfFTrAwjnM4KvUTTGJMxHtKuRYkF1X66WHiGLqwzQGGk7JMGLdzfEykWWk9FYDsFNiO9Wpub/9W6iQlv/JTJODFUkuVHYcKRidD8ejRgihLDpxYwUczuisgIK0yMzahgQ/BWT16HVrXiWX6oluq3WRx5OINzuAQPrqEO99CAJhAQ8Ayv8OYo58V5dz6WrTknmzmFP3I+fwBkmI93</latexit><latexit sha1_base64="WXwfZURW2bOP5dl4A5kYupsZZmo=">AAAB8HicbZDLTgIxFIbP4A3xhrp00wgmLgyZgYUuiW5cYiIXAxPSKR1oaDuTtkNCJjyFGxca49bHcefbWGAWCv5Jky//OSc95w9izrRx3W8nt7G5tb2T3y3s7R8cHhWPT1o6ShShTRLxSHUCrClnkjYNM5x2YkWxCDhtB+O7eb09oUqzSD6aaUx9gYeShYxgY62n8qSfele1WblfLLkVdyG0Dl4GJcjU6Be/eoOIJIJKQzjWuuu5sfFTrAwjnM4KvUTTGJMxHtKuRYkF1X66WHiGLqwzQGGk7JMGLdzfEykWWk9FYDsFNiO9Wpub/9W6iQlv/JTJODFUkuVHYcKRidD8ejRgihLDpxYwUczuisgIK0yMzahgQ/BWT16HVrXiWX6oluq3WRx5OINzuAQPrqEO99CAJhAQ8Ayv8OYo58V5dz6WrTknmzmFP3I+fwBkmI93</latexit>

...

...
...

fig1

Figure 1: An illustration highlighting bags B1, B2, B3, and Bn, following the
decomposition of Theorem 3.8.

Theorem 3.8. For n ≥ m ≥ 2, pw(Km �Kn) ≤ dm2 en+ bm2 c − 1.

Proof. For k ∈ [n], let Bk =

bm/2c⋃
i=1

{vi,k, vi,k+1, . . . , vi,n} ∪
m⋃

i=bm/2c+1

{vi,1, vi,2, . . . , vi,k}.

Observe that each bag Bk contains at most dm2 en+bm2 c vertices. We now verify that
(B1, B2, . . . , Bn) is a path decomposition (see Definition 1.1). Consider arbitrary
vertex vx,y ∈ V (Km �Kn). Clearly vx,y ∈ By, so (B1, B2, . . . , Bn) satisfies condition
(i) of Definition 1.1.
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Let vs,t be a vertex adjacent to vx,y. From the definition of the Cartesian
product, either s = x or t = y. If t = y then obviously vs,t ∈ By. Wlog y < t. If
s = x ≥ bm2 c+ 1, then

vs,t ∈
m⋃

i=bm2 c+1

{vi,1, vi,2, . . . , vi,y} ⊆ By.

If s = x ≤ bm2 c, then

vs,t ∈
bm2 c⋃
i=1

{vi,y, vi,y+1, . . . , vi,n} ⊆ By.

Thus, (B1, B2, . . . , Bn) satisfies condition (ii) of Definition 1.1.

To verify condition (iii) of Definition 1.1, we assume vx,y ∈ Bp, vx,y /∈ Bq, and
vx,y ∈ Br, for 1 ≤ p < q < r ≤ n, and seek a contradiction. If x ≥ bm2 c + 1, then
because p < q,

vx,y ∈
m⋃

i=bm2 c
{vi,1, vi,2, . . . , vi,p} ⊆ Bp ⇒ vx,y ∈

m⋃
i=bm2 c

{vi,1, vi,2, . . . , vi,q} ⊆ Bq.

If x ≤ bm2 c, then because q < r,

vx,y ∈
bm2 c⋃
i=1

{vi,r, vi,r+1, . . . , vi,n} ⊆ Br ⇒ vx,y ∈
bm2 c⋃
i=1

{vi,q, vi,q+1, . . . , vi,n} ⊆ Bq.

Therefore, (B1, B2, . . . , Bn) satisfies condition (iii) of Definition 1.1. 2

The final result of this subsection improves the upper bound for odd m, but
the bags are not all formed in the same way. The bags are described by (3.2)–
(3.4) in Theorem 3.9, but we illustrate the formation of the bags in Figures 2
and 3. For k ∈ {1, . . . , dn2 e}, Bk is described by (3.2) and B1, B2, B3 and Bdn2 e are
highlighted by different shades of grey in Figure 2. For k ∈ {dn2 e+ 1, ...dn2 e+ b

m
2 c},

Bk is described by (3.3) and for k = dn2 e + dm2 e, Bk is described by (3.4). Bags
Bdn2 e+1, Bdn2 e+2, and Bdn2 e+bm2 c are highlighted (in dark, medium, and light grey,
respectively) in Figure 3, while Bdn2 e+dm2 e is indicated with a dotted line.

Theorem 3.9. For n ≥ m ≥ 3 and m odd, pw(Km �Kn) ≤ dm2 en− 1.

Proof. For 1 ≤ k ≤ dn2 e, let

(3.2) Bk =

bm2 c⋃
i=1

{vi,k, vi,k+1, . . . , vi,n} ∪
m⋃

i=dm2 e
{vi,1, vi,2, . . . , vi,k},
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v2,1
<latexit sha1_base64="g6H07FwZ1vjFGU0SB7PAbMF+uIE=">AAAB8HicbZDLSgMxFIbP1Futt6pLN8FWcCFlZja6LLpxWcFepB1KJs20oUlmSDKFMvQp3LhQxK2P4863MW1noa0/BD7+cw455w8TzrRx3W+nsLG5tb1T3C3t7R8cHpWPT1o6ThWhTRLzWHVCrClnkjYNM5x2EkWxCDlth+O7eb09oUqzWD6aaUIDgYeSRYxgY62n6qSf+VferNovV9yauxBaBy+HCuRq9MtfvUFMUkGlIRxr3fXcxAQZVoYRTmelXqppgskYD2nXosSC6iBbLDxDF9YZoChW9kmDFu7viQwLracitJ0Cm5Ferc3N/2rd1EQ3QcZkkhoqyfKjKOXIxGh+PRowRYnhUwuYKGZ3RWSEFSbGZlSyIXirJ69Dy695lh/8Sv02j6MIZ3AOl+DBNdThHhrQBAICnuEV3hzlvDjvzseyteDkM6fwR87nD2MUj3Y=</latexit><latexit sha1_base64="g6H07FwZ1vjFGU0SB7PAbMF+uIE=">AAAB8HicbZDLSgMxFIbP1Futt6pLN8FWcCFlZja6LLpxWcFepB1KJs20oUlmSDKFMvQp3LhQxK2P4863MW1noa0/BD7+cw455w8TzrRx3W+nsLG5tb1T3C3t7R8cHpWPT1o6ThWhTRLzWHVCrClnkjYNM5x2EkWxCDlth+O7eb09oUqzWD6aaUIDgYeSRYxgY62n6qSf+VferNovV9yauxBaBy+HCuRq9MtfvUFMUkGlIRxr3fXcxAQZVoYRTmelXqppgskYD2nXosSC6iBbLDxDF9YZoChW9kmDFu7viQwLracitJ0Cm5Ferc3N/2rd1EQ3QcZkkhoqyfKjKOXIxGh+PRowRYnhUwuYKGZ3RWSEFSbGZlSyIXirJ69Dy695lh/8Sv02j6MIZ3AOl+DBNdThHhrQBAICnuEV3hzlvDjvzseyteDkM6fwR87nD2MUj3Y=</latexit><latexit sha1_base64="g6H07FwZ1vjFGU0SB7PAbMF+uIE=">AAAB8HicbZDLSgMxFIbP1Futt6pLN8FWcCFlZja6LLpxWcFepB1KJs20oUlmSDKFMvQp3LhQxK2P4863MW1noa0/BD7+cw455w8TzrRx3W+nsLG5tb1T3C3t7R8cHpWPT1o6ThWhTRLzWHVCrClnkjYNM5x2EkWxCDlth+O7eb09oUqzWD6aaUIDgYeSRYxgY62n6qSf+VferNovV9yauxBaBy+HCuRq9MtfvUFMUkGlIRxr3fXcxAQZVoYRTmelXqppgskYD2nXosSC6iBbLDxDF9YZoChW9kmDFu7viQwLracitJ0Cm5Ferc3N/2rd1EQ3QcZkkhoqyfKjKOXIxGh+PRowRYnhUwuYKGZ3RWSEFSbGZlSyIXirJ69Dy695lh/8Sv02j6MIZ3AOl+DBNdThHhrQBAICnuEV3hzlvDjvzseyteDkM6fwR87nD2MUj3Y=</latexit><latexit sha1_base64="g6H07FwZ1vjFGU0SB7PAbMF+uIE=">AAAB8HicbZDLSgMxFIbP1Futt6pLN8FWcCFlZja6LLpxWcFepB1KJs20oUlmSDKFMvQp3LhQxK2P4863MW1noa0/BD7+cw455w8TzrRx3W+nsLG5tb1T3C3t7R8cHpWPT1o6ThWhTRLzWHVCrClnkjYNM5x2EkWxCDlth+O7eb09oUqzWD6aaUIDgYeSRYxgY62n6qSf+VferNovV9yauxBaBy+HCuRq9MtfvUFMUkGlIRxr3fXcxAQZVoYRTmelXqppgskYD2nXosSC6iBbLDxDF9YZoChW9kmDFu7viQwLracitJ0Cm5Ferc3N/2rd1EQ3QcZkkhoqyfKjKOXIxGh+PRowRYnhUwuYKGZ3RWSEFSbGZlSyIXirJ69Dy695lh/8Sv02j6MIZ3AOl+DBNdThHhrQBAICnuEV3hzlvDjvzseyteDkM6fwR87nD2MUj3Y=</latexit>

...

Figure 2: An illustration highlighting some bags described by (3.2) following
the decomposition of Theorem 3.9.

for dn2 e+ 1 ≤ k ≤ dn2 e+ bm2 c, let
(3.3)

Bk =

m⋃
i=k−dn2 e+bm2 c

{vi,1, vi,2, . . . , vi,dn2 e} ∪
k−dn2 e+bm2 c⋃

i=1

{vi,dn2 e+1, vi,dn2 e+2, . . . , vi,n}

and, for k = dn2 e+ dm2 e, let

(3.4) Bk = {vm,1, vm,2, . . . , vm,dn2 e} ∪
m⋃
i=1

{vi,dn2e+1, vi,dn2e+2, . . . , vi,n}.

We now verify that (B1, B2, . . . , Bdn2e+dm2 e) is a path decomposition. Consider
an arbitrary vertex vx,y ∈ V (Km �Kn). If 1 ≤ y ≤ dn2 e then from (3.2), vx,y ∈ By.
If dn2 e+ 1 ≤ y ≤ n then from (3.4), vx,y ∈ Bdn2e+dm2 e. Thus, (B1, B2, . . . , Bdn2e+dm2 e)
satisfies condition (i) of Definition 1.1.

Let vs,t be a vertex adjacent to vx,y. From the definition of the Cartesian
product, either s = x or t = y. First, suppose t = y and wlog s < x. If 1 ≤ y ≤ dn2 e
then from (3.2), vs,t, vx,y are both in By. If dn2 e + 1 ≤ y ≤ n, then vs,y, vx,y are
both in Bdn2e+dm2 e. Second, suppose s = x and wlog t < y. We consider the possible
cases:

(i) Assume x = m. Then clearly vx,y, vs,t are both in Bdn2 e+dm2 e by (3.4).
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v1,1 v1,dn
2 e+1v1,dn

2 e v1,dn
2 e+2 v1,dn

2 e+bm
2 c�1 v1,dn

2 e+bm
2 c v1,n

vbm
2 c,1

vdm
2 e,1

vdm
2 e+1,1

vm�2,1

vm�1,1

vm,1

... ... ...

...
...

fig2

Figure 3: An illustration highlighting some bags described by (3.3) and (3.4)
following the decomposition of Theorem 3.9.

(ii) Assume bm2 c ≤ x < m. Then vx,y, vs,t are both in Bx+dn2 e−bm2 c by (3.3).

(iii) Assume 1 ≤ x ≤ bm2 c − 1. If 1 ≤ t ≤ dn2 e, then vx,y, vs,t are both in Bt
by (3.2). If t > dn2 e then vx,y, vs,t are both in Bdn2 e+dm2 e by (3.4).

Therefore, (B1, B2, . . . , Bdn2e+dm2 e) satisfies condition (ii) of Definition 1.1.
To verify condition (iii) of the definition, we assume vx,y ∈ Bp, vx,y /∈ Bp+1,

and vx,y ∈ Br, for 1 ≤ p < p+ 1 < r ≤ n, and seek a contradiction.

(a) Suppose 1 ≤ p < p+ 1 ≤ dn2 e. Then by (3.2),

Bp\Bp+1 = {v1,p, v2,p, . . . , vbm2 c,p}.

If r ≤ dn2 e then, by (3.2), clearly no vertex in the set {v1,p, v2,p, . . . , vbm2 c,p} is
in Br. Thus, r ≥ dn2 e+ 1. In this case, consider

Bdn2 e+1 =

m⋃
i=dm2 e

{vi,1, vi,2, . . . , vi,dn2 e} ∪
dm2 e⋃
i=1

{vi,dn2 e+1, vi,dn2 e+2, . . . , vi,n}.
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Clearly, for 1 ≤ p < p + 1 ≤ dn2 e, no vertex in the set {v1,p, v2,p, . . . , vbm2 c,p} is in
Bdn2e+1.

(b) Suppose 1 ≤ p ≤ dn2 e < p+ 1 ≤ dn2 e+ dm2 e. Then we may assume p = dn2 e and
vx,y ∈ Bdn2e, but vx,y /∈ Bdn2e+1. In this case, using (3.2) and (3.3), we find

Bdn2e\Bdn2e+1 = {v1,dn2e, v2,dn2e, . . . , vbm2 c,dn2e}.

It suffices to consider r = dn2 e + 2 to obtain a contradiction. If m ≥ 4 then,
from (3.3),

Bdn2e+2 =

m⋃
i=dm2 e+1

{vi,1, vi,2, . . . , vi,dn2 e} ∪
dm2 e+1⋃
i=1

{vi,dn2 e+1, vi,dn2 e+2, . . . , vi,n}

and, if m = 3, then from (3.4),

Bdn2e+2 = {vm,1, vm,2, . . . , vm,dn2 e} ∪
m⋃
i=1

{vi,dn2 e+1, vi,dn2 e+2, . . . , vi,n}.

In either case, (Bdn2 e\Bdn2 e+1) ∩Bdn2 e+2 = ∅ and we have obtained a contradiction
with r = dn2 e + 2. Thus, if 1 ≤ p ≤ dn2 e < q ≤ dn2 e + dm2 e, condition (iii) of
Definition 1.1 is satisfied.

(c) Suppose dn2 e+1 ≤ p < p+1 < r ≤ dn2 e+ d
m
2 e. Then vx,y ∈ Bp and vx,y /∈ Bp+1

and by (3.4),

Bp\Bp+1 = {vp−dn2 e+bm2 c,1, vp−dn2 e+bm2 c,2, . . . , vp−dn2 e+bm2 c,dn2 e}.

However, (Bp\Bp+1) ∩Bp+2 = ∅; to see this, we explicitly state Bp+2 below.

If p+ 2 < dn2 e+ dm2 e then, from (3.3),

Bp+2 =

m⋃
i=p+2−dn

2
e+bm

2
c

{vi,1, vi,2, . . . , vi,dn
2
e} ∪

p+2−dn
2
e+bm

2
c⋃

i=1

{vi,dn
2
e+1, vi,dn

2
e+2, . . . , vi,n}.

If p+ 2 = dn2 e+ dm2 e then, from (3.4),

Bp+2 = {vm,1, vm,2, . . . , vm,dn2 e} ∪
m⋃
i=1

{vi,dn2e+1, vi,dn2e+2, . . . , vi,n}.

As p < dn2 e+ dm2 e, it is clear that no vertex of Bp\Bp+1 appears in Bp+2. We
have obtained a contradiction, using r = p + 2. Thus, condition (iii) of Definition
1.1 is satisfied.

Therefore, (B1, B2, . . . , Bdn2e+dm2 e) forms a path decomposition.
As n ≥ m ≥ 3, counting the number of vertices in Bk for (3.2), (3.3), and (3.4)

finds |Bk| ≤ dm2 en. 2
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3.3. The Pathwidth of the Product of Cliques

The following corollary is immediate from Lemma 3.3 and Theorems 3.5, 3.7–
3.9.

Corollary 3.10. For n ≥ m ≥ 2,

pw(Km �Kn) =

{
m
2 n+ m

2 − 1 if m even

dm2 en− 1 if m odd.

Our final results follow directly from Corollary 3.1(a), Lemma 3.2, and Corollary
3.10. Corollary 3.11 bounds the search number of the Cartesian product of cliques to
within 2 and improves the bound of [21], given in Inequality (3.1), by half. Corollary
3.12 provides the lower bound for the search number of the product of two general
graphs G and H.

Corollary 3.11. For n ≥ m ≥ 2, if m is even, then

m

2
n+

m

2
− 1 ≤ s(Km �Kn) ≤ m

2
n+

m

2
+ 1

and, if m is odd, then⌈m
2

⌉
n− 1 ≤ s(Km �Kn) ≤

⌈m
2

⌉
n+ 1.

Corollary 3.12. For |V (H)| ≥ |V (G)| ≥ 4, where the clique numbers of graphs G
and H are m and n respectively,

s(G�H) ≥

{
m
2 n+ m

2 − 1 if m even

dm2 en− 1 if m odd.
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