DOI QR코드

DOI QR Code

First Records of Rare Ascomycete Fungi, Acrostalagmus luteoalbus, Bartalinia robillardoides, and Collariella carteri from Freshwater Samples in Korea

  • Nguyen, Thuong T.T. (Division of Food Technology, Biotechnology & Agrochemistry, College of Agriculture & Life Sciences, Chonnam National University) ;
  • Lee, Seo Hee (Division of Food Technology, Biotechnology & Agrochemistry, College of Agriculture & Life Sciences, Chonnam National University) ;
  • Jeon, Sun Jeong (Division of Food Technology, Biotechnology & Agrochemistry, College of Agriculture & Life Sciences, Chonnam National University) ;
  • Lee, Hyang Burm (Division of Food Technology, Biotechnology & Agrochemistry, College of Agriculture & Life Sciences, Chonnam National University)
  • Received : 2018.06.14
  • Accepted : 2018.11.12
  • Published : 2019.03.01

Abstract

The distribution and occurrence of rare ascomycete fungi within freshwater samples in Korea was investigated. Three rare fungal strains, CNUFC-YR537-1, CNUFC-CNUP1-1, and CNUFC-NDR3-1, were isolated using serial dilution method. On the basis of their morphological characteristics and phylogenetic analysis of their internal transcribed spacer regions and 28S rDNA sequences, the three isolates were identified as Acrostalagmus luteoalbus, Bartalinia robillardoides, and Collariella carteri, respectively. To our knowledge, these are the first records of rare genera Acrostalagmus, Bartalinia, and Collariella from Korea, and the first reports of A. luteoalbus, B. robillardoides, and C. carteri from freshwater samples.

Keywords

References

  1. Shearer CA. The freshwater Ascomycetes. Nova Hedwigia. 1993;56:1-33.
  2. Bucher VVC, Pointing SB, Hyde KD. Production of wood decay enzymes, loss of mass, and lignin solubilization in wood by diverse tropical freshwater fungi. Microb Ecol. 2004;48:331-337. https://doi.org/10.1007/s00248-003-0132-x
  3. Jones EBG, Hyde KD, Pang KL. Freshwater fungi and fungal-like organisms. Boston: De Gruyter; 2014.
  4. Hyde KD, Fryar S, Tian Q, et al. Lignicolous freshwater fungi along a north-south latitudinal gradient in the Asian/Australian region; can we predict the impact of global warming on biodiversity and function? Fungal Ecol. 2016;19:190-200. https://doi.org/10.1016/j.funeco.2015.07.002
  5. Maharachchikumbura SSN, Hyde KD, Jones EBG, et al. Families of Sordariomycetes. Fungal Divers. 2016;79:1-317. https://doi.org/10.1007/s13225-016-0369-6
  6. Hongsanan S, Maharachchikumbura SNN, Hyde KD, et al. An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence. Fungal Divers. 2017;84: 25-41. https://doi.org/10.1007/s13225-017-0384-2
  7. Zhang N, Castlebury LA, Miller AN, et al. An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia. 2006; 98:1076-1087. https://doi.org/10.1080/15572536.2006.11832635
  8. Maharachchikumbura SN, Hyde KD, Jones EBG, et al. Towards a natural classification and backbone tree for Sordariomycetes. Fungal Divers. 2015;72:199-301. https://doi.org/10.1007/s13225-015-0331-z
  9. Corda ACJ. Abbildungen der Pilze und Schwaemme. Icones Fungorum Hucusque Cognitorum. 1838;2:1-43.
  10. Zare R, Gams W, Schroers HJ. The type species of Verticillium is not congeneric with the plantpathogenic species placed in Verticillium and it is not the anamorph of 'Nectria' inventa. Mycol Res. 2004;108:576-582. https://doi.org/10.1017/S0953756204009839
  11. Rubini MR, Silva-Ribeiro RT, Pomella AWV, et al. Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of witches' broom disease. Int Biol Sci. 2005;1:24-33.
  12. Grantina-levina L, Andersone U, Berkolde-Pire D, et al. Critical tests for determination of microbiological quality and biological activity in commercial vermicompost samples of different origins. Appl Microbiol Biotechnol. 2013;97:10541-10554. https://doi.org/10.1007/s00253-013-4825-x
  13. Mohammadi A, Amini Y. Molecular characterization and identification of A. luteoalbus from saffron in Iran. Agric Sci Dev. 2015;4:16-18.
  14. Zhang GZ, Tang CY. First report of Acrostalagmus luteo-albus causing red rust of needle mushroom (Flammulina velutipes) in China. Plant Dis. 2015; 99:158. https://doi.org/10.1094/PDIS-07-14-0728-PDN
  15. Tassi F, Bartalinia Fl. Tassi Nuovo genere di Sphaeropsidaceae. Bull Lab Ort Bot Siena. 1990;3: 3-5.
  16. Crous PW, Giraldo A, Hawksworth DL, et al. The genera of Fungi: fixing the application of type species of generic names. IMA Fungus. 2014;5: 141-160. https://doi.org/10.5598/imafungus.2014.05.01.14
  17. Tejesvi MV, Tamhankar SA, Kini KR, et al. Phylogenetic analysis of endophytic Pestalotiopsis species from ethnopharmaceutically important medicinal trees. Fungal Divers. 2009;38:167-183.
  18. Wang Y, Jin L, Lin L, et al. New hosts for Bartalinia and Chaetopyrena in China. Mycotaxon. 2016;131:1-6. https://doi.org/10.5248/131.1
  19. Wanasinghe DN, Phukhamsakda C, Hyde KD, et al. Fungal diversity notes 709-839: taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. Fungal Divers. 2018;89:1-236. https://doi.org/10.1007/s13225-018-0395-7
  20. Gangadevi V, Muthumary J. Taxol, an anticancer drug produced by an endophytic fungus B. robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb. World J Microbiol Biotechnol. 2008;24:717-724. https://doi.org/10.1007/s11274-007-9530-4
  21. Jansen N, Ohlendorf B, Erhard A, et al. Helicusin E, isochromophilone X and isochromophilone XI: new chloroazaphilones produced by the fungus B. robillardoides strain LF550. Mar Drugs. 2013;11: 800-816. https://doi.org/10.3390/md11030800
  22. Wijayawardene NN, Hyde KD, Wanasinghe DN, et al. Taxonomy and phylogeny of dematiaceous coelomycetes. Fungal Divers. 2016;77:1-316. https://doi.org/10.1007/s13225-016-0360-2
  23. Wang XW, Houbraken J, Groenewald JZ, et al. Diversity and taxonomy of Chaetomium and chaetomium- like fungi from indoor environments. Stud Mycol. 2016;84:145-224. https://doi.org/10.1016/j.simyco.2016.11.005
  24. Crous PW, Wingfield MJ, Burgess TI, et al. Fungal planet description sheets: 625-715. Persoonia. 2017;39:270-467.
  25. Zhang ZF, Liu F, Zhou X, et al. Culturable mycobiota from Karst caves in China, with descriptions of 20 new species. Persoonia. 2017;39:1-31. https://doi.org/10.3767/persoonia.2017.39.01
  26. Hyde KD, Hongsanan S, Jeewon R, et al. Fungal diversity notes 367-490: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2016;80:1-270. https://doi.org/10.1007/s13225-016-0373-x
  27. Mun HY, Goh J, Oh Y, et al. New records of three aquatic fungi isolated from freshwater in Samcheok and Yeongju, Korea. Kor J Mycol. 2016; 44:247-251. https://doi.org/10.4489/KJM.2016.44.4.247
  28. Goh J, Mun HY, Oh Y, et al. Four species of Montagnulaceae unrecorded in Korea and isolated from plant litter in freshwater. Kor J Mycol. 2016; 44:263-270. https://doi.org/10.4489/KJM.2016.44.4.263
  29. Nguyen TTT, Choi Y-J, Lee HB. Isolation and characterization of three unrecorded Zygomycete fungi in Korea: Cunninghamella bertholletiae, Cunninghamella echinulata, and Cunninghamella elegans. Mycobiology. 2017;45:318-318. https://doi.org/10.5941/MYCO.2017.45.4.318
  30. Tibpromma S, Hyde KD, Jeewon R, et al. Fungal diversity motes 491-602: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2017;83:1-261. https://doi.org/10.1007/s13225-017-0378-0
  31. Nguyen TT, Lee SH, Bae S, et al. Characterization of two new records of Zygomycete species belonging to undiscovered taxa in Korea. Mycobiology. 2016;44:29-37. https://doi.org/10.5941/MYCO.2016.44.1.29
  32. Nguyen TT, Paul NC, Lee HB. Characterization of Paecilomyces variotii and Talaromyces amestolkiae in Korea based on the morphological characteristics and multigene phylogenetic analyses. Mycobiology. 2016;44(4):248-259. https://doi.org/10.5941/MYCO.2016.44.4.248
  33. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In. Innis M.A., Gelfand DH, Sninsky JJ, White TJ., editors. PCR protocols: a guide to methods and applications. New York, United States; Academic Press: 1990; p. 315-322.
  34. Lee HB. Molecular phylogenetic status of Korean strain of Podosphaera xanthii, a causal pathogen of powdery mildew on Japanese thistle (Cirsium japonicum) in Korea. J Microbiol. 2012;50:1075-1080. https://doi.org/10.1007/s12275-012-2618-z
  35. Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25: 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  36. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95-98.
  37. Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725-2729. https://doi.org/10.1093/molbev/mst197
  38. Kelly LJ, Hollingsworth PM, Coppins BJ, et al. DNA barcoding of lichenized fungi demonstrates high identification success in a floristic context. New Phytol. 2011;191:288-300. https://doi.org/10.1111/j.1469-8137.2011.03677.x
  39. Dai YC, Cui BK, Si J, et al. Dynamics of the worldwide number of fungi with emphasis on fungal diversity in China. Mycol Prog. 2015;14:62. https://doi.org/10.1007/s11557-015-1084-5
  40. Kiss L. Limits of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences as species barcodes for Fungi. Proc Natl Acad Sci USA 2012;109: E1811. https://doi.org/10.1073/pnas.1207143109
  41. Schoch CL, Seifert KA, Huhndorf S, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci USA. 2012;109:6241-6246. https://doi.org/10.1073/pnas.1117018109
  42. Porras-Alfaro A, Liu KL, Kuske CR, et al. From genus to phylum: large-subunit and internal transcribed spacer rRNA operon regions show similar classification accuracies influenced by database composition. Appl Environ Microbiol. 2014;80:829-840. https://doi.org/10.1128/AEM.02894-13
  43. Grum-Grzhimaylo AA, Georgieva ML, Bondarenko SA, et al. On the diversity of fungi from soda soils. Fungal Divers. 2016;76:27-74. https://doi.org/10.1007/s13225-015-0320-2
  44. Wang FZ, Huang Z, Shi XF, et al. Cytotoxic indole diketopiperazines from the deep sea-derived fungus A. luteoalbus SCSIO F457. Bioorg Med Chem Lett. 2012;22:7265-7267. https://doi.org/10.1016/j.bmcl.2012.08.115
  45. Yu G, Wang Y, Yu R, et al. Chetracins E and F, cytotoxic epipolythiodioxopiperazines from the marine-derived fungus A. luteoalbus HDN13-530. RSC Adv. 2018;8:53-58. https://doi.org/10.1039/C7RA12063J
  46. Rojas NL, Voget CE, Hours RA, et al. Purification and characterization of a novel alkaline ${\alpha}$-L-rhamnosidase produced by A. luteoalbus. J Ind Microbiol Biotechnol. 2011;38:1515-1522. https://doi.org/10.1007/s10295-010-0938-8
  47. Nag Raj TR. Coelomycetous anamorphs with appendage-bearing conidia. Waterloo, Canada; Mycologue Publications: 1993; p. 1101.

Cited by

  1. Four Endophytic Ascomycetes New to Korea: Cladosporium anthropophilum, C. pseudocladosporioides, Daldinia eschscholtzii, and Nigrospora chinensis vol.47, pp.3, 2019, https://doi.org/10.4489/kjm.20190023
  2. Pezizomycotina (Ascomycota) Fungi Isolated from Freshwater Environments of Korea: Cladorrhinum australe, Curvularia muehlenbeckiae, Curvularia pseudobrachyspora, and Diaporthe longicolla vol.48, pp.1, 2019, https://doi.org/10.4489/kjm.20200003
  3. A Culture-Based ID of Micromycetes on the Wing Membranes of Greater Mouse-Eared Bats ( Myotis myotis ) from the “Nietoperek” Site (Poland) vol.10, pp.8, 2019, https://doi.org/10.3390/ani10081337
  4. Six Newly Recorded Fungal Taxa from Freshwater Niche in Korea vol.49, pp.2, 2019, https://doi.org/10.1080/12298093.2020.1862472
  5. Keratinophilic and Keratinolytic Fungi in Cave Ecosystems: A Culture-Based Study of Brestovská Cave and Demänovská Ľadová and Slobody Caves (Slovakia) vol.12, pp.3, 2022, https://doi.org/10.3390/app12031455