
Journal of Multimedia Information System VOL. 6, NO. 1, March 2019 (pp. 7-14): ISSN 2383-7632(Online)

https://doi.org/10.33851/JMIS.2019.6.1.7

7

I. INTRODUCTION

Image stitching is a technique for combining multiple

images into one single image captured from different cameras

(sources) to generate a panoramic image. Image stitching can

reduce redundant information in multiple sets of images,

increase the image storage capability, and enable more

effective views of the real world [1]. Due to the numerous

advantages, image stitching is widely used for self-driving

cars/drones, 3D mapping, defense systems, and medical

imaging [2] – [4]. However, due to the intense computing

most of the image stitching hardware has been implemented

with extremely high cost servers or high performance, multi-

GPU/DSP platforms which require enormous computing and

power usage [5] – [8].

On the other hand, the demands on customized image

processing hardware that can perform more specific tasks are

increasing due to emerging applications such as unmanned

vehicles, remote sensing, and mobile computing, where the

memory size, computational resources, and power are all

limited [9]. That is, specific hardware implementation is

needed when general purpose computers are not suitable due

to constraints on speed, size, and energy consumption. In this

case, even the general purpose GPUs cannot be used due to

the power consumption that can easily exceed 100W.

However, while image stitching platforms can be easily

implemented on general purpose computers, hardware

implantation imposes many challenges due to the

contradiction between limited hardware resources and the

requirements for high performance. As a result, it is still

challenging to realize image stitching, hardware for

embedded real-time applications. Another difficulty that

limits the hardware implementation is that accurate

performance – computation speed, power, and area estimation

is not easy in the early design stage. This is only possible after

the gate or transistor level implementation has been

completed. Although there are open source hardware

description language that support image processing

algorithms such as the VHDL, it is a time consuming job to

convert the VHDL code into the circuit level and run a series

of simulations to figure out the hardware performance. To

make matters worse, this iteration should to be repeated

several times to end up with an optimized hardware

performance. Therefore, in order to extend the applicability

of the hardware-based image stitching platforms, there is an

Virtual Prototyping of Area-Based Fast Image Stitching Algorithm

Lakshmi Kalyani Mudragada1*, Kye-Shin Lee1, Byung-Gyu Kim2

Abstract

This work presents a virtual prototyping design approach for an area-based image stitching hardware. The virtual hardware obtained from

virtual prototyping is equivalent to the conceptual algorithm, yet the conceptual blocks are linked to the actual circuit components including

the memory, logic gates, and arithmetic units. Through the proposed method, the overall structure, size, and computation speed of the actual

hardware can be estimated in the early design stage. As a result, the optimized virtual hardware facilitates the hardware implementation by

eliminating trail design and redundant simulation steps to optimize the hardware performance. In order to verify the feasibility of the proposed

method, the virtual hardware of an image stitching platform has been realized, where it required 10,522,368 clock cycles to stitch two 1280

× 1024 sized images. Furthermore, with a clock frequency of 250MHz, the estimated computation time of the proposed virtual hardware is

0.877sec, which is 10x faster than the software-based image stitch platform using MATLAB.

Key Words: Area-Based Fast Image Stitching, Hardware Platform, Virtual Hardware, Virtual Prototyping.

Manuscript received March 08, 2019; Revised March 15, 2019; Accepted March 17, 2019. (ID No. JMIS-19M-03-006)

Corresponding Author (*): Lakshmi Kalyani Mudragada, ASEC260, Akron OH 44304, USA, 2344177717,

lm135@zips.uakron.edu

1Dept. of Electrical and Computer Engineering, The University of Akron, Akron, Ohio, USA, klee3@uakron.edu
2Dept. of IT Engineering, Sookmyung Women’s University, Seoul, Korea, bg.kim@sm.ac.kr

https://doi.org/10.33851/JMIS.2019.6.1.7
mailto:klee3@uakron.edu
mailto:bg.kim@sm.ac.kr

Virtual Prototyping of Area-based Fast Image Stitching Algorithm

8

urgent demand for finding new design approaches that can

facilitate the hardware design.

In this paper, an algorithm for area-based image stitching is

proposed, which does the comparison of two images, find the

overlap and stitch two images. Comparing two images takes

more computations when compared to other two steps, which

can be reduced by image binarization. In addition to that we

reduced the image size by scaling. Further, we propose a

virtual prototyping design approach for an area-based image

stitching hardware. With the proposed approach, the overall

structure, size, and computation speed of the actual hardware

can be estimated in the early design stage. As a result, the

optimized virtual hardware facilitates the hardware

implementation by eliminating trail design and redundant

simulation steps. Furthermore, the performance of the

proposed virtual hardware has been compared with software-

based image stitching algorithms.

II. AREA-BASED IMAGE STITCHING

WITH BINARY IMAGES

This section describes the area-based image stitching

algorithm using binary images (1-bit pixels) which can speed

up the computation by simplifying the operations. In this case,

pixel comparison between the two images can be realized

with a simple logical operation instead of subtraction and

multiplication. The area -based image stitching algorithm is

converted into a virtual hardware, where the hardware size

and computation time can be estimated.

2.1 Algorithm

Figure 1 shows area-based image stitching algorithm. First

two input images (24bit color) are read which have

overlapping area. A pixel color in an image is a combination

of three colors Red, Green, and Blue (RGB). The RGB color

values are represented in three dimensions XYZ, illustrated

by the attributes of lightness, chroma, and hue. The quality of

a color image depends on the color represented by the number

of bits the digital device can support. If each Red, Green, and

Blue occupy 8 bits, then the combination of RGB occupies 24

bits and supports 16,777,216 different colors. The 24 bits

represent the color of a pixel in the color image. The grayscale

image has represented by luminance using 8 bit value. The

luminance of a pixel value of a grayscale image ranges from

0 to 255. The conversion of a color image into a grayscale

image is converting the RGB values (24 bit) into grayscale

value (8 bit).

Furthermore, the gray scale (8 bit) input image is converted

into binary images. The binary image can be obtained by

comparing each pixel with a threshold level – usually the mid-

level of the minimum and maximum pixel value, and

representing the pixel value with either 1 (pixel intensity

greater than the threshold) or 0 (pixel intensity less than the

threshold), where 1 and 0 stands for the white and black level,

respectively. In this case, the threshold, 128 is suitable for our

application since it still preserves useful information. In

addition, by using binary images, the amount of computations

to compare every pixel of two images is significantly reduced,

which enables a very fast image stitching.

In addition, the size of the binary image area reduced by

using a scaling factor K. To rescale the image, consider a

KxK pixel data in sequence, such that all the information of

the image is maintained. Each KxK data is replaced with a

single bit (1 or 0). If 1 is occurring more pixel than 0 in KxK

pixel data, replace the KxK pixels with 1. Similarly, if 0 is

occurring more pixels, replace KxK pixels with 0. In this way

we can reduce the original binary image (size MxN)

to M/K × N/K.

Next, we start comparing the two M/K × N/K sized

images. Each pixel in the image is being compared to all the

pixels in this case. An XOR operation is used to compare the

pixels. How to compare the two images is fully discussed in

section 2.2 and 2.3.

After comparing two images we can find the optimum

overlap between the two images. When two pixels that are

compared are same the XOR operation output is 0. If the two

pixels that are compared are not same the XOR operation

output is 1. All the pixels that are compared are added and

divided by the number of comparisons (i.e., average of XOR

outputs). Since XOR operations states that same inputs 0

output, the overlapped area gives the 0 output or the

maximum overlapped area gives the minimum average value.

Therefore, the minimum average value is used to determine

the optimum overlapped area.

 After finding the optimum overlapped area of two images,

we use grayscale images for stitching. Using grayscale data

takes more time for finding the optimum overlap area. Thus

we only use binary images for comparing the pixels and

finding the overlapped area. Finally, the stitch image is

obtained by removing the overlap area in the image-2, and

concatenating the two images

Fig. 1. Area-based Image Stitching Algorithm.

Journal of Multimedia Information System VOL. 6, NO. 1, March 2019 (pp. 7-14): ISSN 2383-7632(Online)

https://doi.org/10.33851/JMIS.2019.6.1.7

9

2.2 One Dimensional Image Stitching

 Area-based image stitching can be performed in either

one dimension or two dimensions. Figure 2 shows the one

dimensional approach, where a 3X3 image is considered for

simplicity. In one dimensional approach, the image is being

shifted either horizontal or vertical direction only. In this

example, the image-2 is shifter horizontally. During the first

iteration, column-3 of image-1 and column-1 in the image-2

are compared. The shaded pixels indicate the pixels being

compared. The two pixels in the shaded area (each from

image-1 and image-2) are compared, which is realized by

XOR operation. The result is 0 when the two pixels match

otherwise the result is 1. Next, the XOR results are all added

up and divided by the number of comparing pixels, (for first

iteration 3). This value corresponds to the average of pixel

comparison of each iteration. Similarly, in the second and

third iteration, 6 and 9 pixels (each from image-1 and image-

2) are compared. After comparing all the pixels, the averages

of pixel comparison at each iteration are again compared,

where the minimum average value leads to the optimum

overlap. It is observed that from figure 2, first iteration

average value is 0, second iteration average value is 0.66 and

the third iteration average value is 0.55. Therefore area

compared in first iteration has overlap. Figure 3 shows the one

dimensional image stitching results based on the optimum

overlap. The overlapped area highlighted in red color.

Fig. 2. One Dimensional Pixel Comparison.

Fig. 3. One Dimensional Image Stitching Result..

2.3 Two Dimensional Comparison

For the one dimensional image stitching, image-1 and

image-2 are shifted in the horizontal direction to vary the

pixel positions to be compared. However, in the two

dimensional image stitching, image-1 is shifted both in the

horizontal and the vertical direction to vary the pixel position

to be compared. As a result, it is more accurate than the one

dimensional case, though this leads to more complicated

computations. Figure 4 shows the two dimensional image

stitching algorithm using two 3X3 images, where the shaded

pixels indicate the pixels being compared. Similar to the one

dimensional case, there are column 1, 2, 3 overlaps (obtained

by just shifting image-1 horizontally). However, in addition

to this for each column overlap, image-1 is shifted vertically

that ends up with 5 different areas being compared. Therefore,

there are total 15 iterations (5 iterations for each column

overlap). The procedure for finding the average of pixel

comparison for each area being compared is exactly same as

the one dimensional case. Assuming the second iteration of

column 2 overlap shows the minimum average of pixel

comparison among the other overlap cases, the two

dimensional image stitching result is shown in figure 5, where

extra 0’s are filled at the blank area that are generated after

combing the two images (the two yellow pixels). The

overlapped area (pixels named A, B, C, D) is highlighted in

red color.

 Column 1 Column 2 Column 3

Fig. 4. Two Dimensional Pixel Comparison.

https://doi.org/10.33851/JMIS.2019.6.1.7

Virtual Prototyping of Area-based Fast Image Stitching Algorithm

10

Fig. 5. Two Dimensional Image Stitching Result.

III. VIRTUAL PROTOTYPING OF AREA-

BASED IMAGE STITCHING

ALGORITHM

3.1 CONCEPT OF VIRTUAL PROTOTYPING

The basic concept of the proposed virtual prototyping is

converting the conceptual or algorithm level image stitching

platform into an actual hardware that consists of the memory,

logic, or arithmetic unit. In addition, this allows estimating

the memory size, number of adders, subtractors, and logic

gates that are present in the image stitching hardware. Figure

6 shows the concept of the proposed virtual prototyping

which is applied to an area-based image stitching algorithm,

where Figure 6 (a) shows the conceptual representation of the

algorithm and Figure 6 (b) shows the resulting virtual

hardware obtained through virtual prototyping. The virtual

hardware is equivalent to the area-based image stitching

algorithm which performs the same operation, however the

conceptual blocks are replaced with actual circuit components

such as the memory, logic gates, and arithmetic unit. As a

result, from the virtual hardware, the size and computation

time of the actual hardware can be estimated. The virtual

prototyping approach facilitates the hardware design by

image processing circuits by enabling performance

estimation at the early design stage.

Fig. 6. Concept of virtual prototyping (a) Area-based mage

stitching algorithm (b) Virtual hardware.

3.2 VIRTUAL HARDWARE IMPLEMENTAION

A virtual hardware platform is designed for the proposed

area-based image stitching algorithm. Figure 7 shows the

virtual hardware of area-based image stitching algorithm for

the MXN image. Three different memories are used to store

the image data. Memory-1 is used to store the image-1 data

throughout the process. Similarly, memory-2 is used for

image-2. The stitched image data is stored in Memory-3.

Memory-1 and memory-2 are indicated in pink color. And

memory-3 is indicated in yellow color at the bottom left

corner. Writing and reading for memory-1 and memory2 is

performed simultaneously. Since two memories are used, the

computation time to read and write operations is halved.

Control 1 block is used to write the grayscale image data (0

to 255) into memory-1 and memory-2. The converted

grayscale image data are written into the memories. Next

control 2 block is used to read the grayscale image data from

memory-1 and memory-2 to convert grayscale image data

into binary data (1 or 0).

3.2.1 Converting the grayscale image into binary image

A comparator is used to compare each grayscale pixel in

the image-1 and image-2 with 128. If the value of the

grayscale image data is less than 128, output of the

comparator is 0, if the value of the grayscale image data is

greater than 128, and the output of the comparator is 1. Next,

control 3 block is used to write the converted binary data into

the respective memories, which is represented as the green

color. Writing the binary data into the memories is realized in

a pipelining process. Reading the grayscale data, converting

the grayscale into binary takes 1 cycle. In the next cycle,

reading the grayscale data and writing the previously

converted binary data into the memories is performed. This

process continues until all the grayscale image data is

converted into the binary data.

3.2.2 Image size scaling

Now we need to scale the binary data with the scaling factor

K (2, 4, 8, 16, etc.). Reducing the size of the image is helpful

for reducing the computation time. We used different scaling

factors and found that, the scaling factor K cannot be more

than 8. If K is greater than 8 (i.e., 16 or 32 etc.), the image

information is changed while rescaling, which may not lead

to the accurate image stitching result. This conclusion is made

based on MATLAB results. To rescale the image, we used a

combinational circuit with XOR gate, two counters and a

comparator. Control 4 block is used to read the binary data,

which is in yellow color. To scale an image we read KxK

(2X2 or 4X4 or 8X8 etc.) image data and compare each bit

with 1, for comparing we used XOR gate. The XOR gate

output can be 1 or 0, which is applied to the counters. There

are two counters C in figure 7, which counts the number of

1’s and the number of 0’s. Next, we compare the total number

of 1’s and 0’s using a comparator. The highest occurrence of

data (1 or 0) is called the rescaled binary data, which is

Journal of Multimedia Information System VOL. 6, NO. 1, March 2019 (pp. 7-14): ISSN 2383-7632(Online)

https://doi.org/10.33851/JMIS.2019.6.1.7

11

written into the respective memories. Next, write

the rescaled data simultaneously into the memory

immediately after comparing the last bit. Control 5 block is

used to write the rescaled binary data. Now we are fetching

the data from memories to compare the images and find the

overlap.

3.2.3 Two dimensional image comparison

Comparison to find the overlap between two images is

being performed at this point. Read the binary data as

explained in figure 4 (the shaded pixels). Control 6 block in

figure 7 shows the control to read the binary data of image-1

and image-2 from the memories. Comparing the pixels in

hardware implementation is realized by a combinational logic

with XOR gate, adder and divider. Each area is compared

with XOR gate and the results are summed using an adder.

Next, a divider is used to divide the added value by the

number of comparisons performed. For the example used

(3X3 image) we get 15 divider outputs. There is no need to

use another memory to store the average values of

the compared areas. Figure 7 shows the logic to find the

minimum, and further used to find the position of the

overlapped area. The minimum value of the divider output is

considered to be overlapped area. There is a possibility to be

more than one minimum value. There is also the possibility

of overlapping more than one arrangement that has the

minimum pixel comparison average. In this case, the overlap

with the maximum number of pixels is selected as the

optimum overlap. Furthermore, the location and size of the

optimum overlap area is obtained by the overlap location

calculator block, which consists of combinational logic. After

finding the optimum overlapped area, control 7 block is used

to read the grayscale image data to perform the stitching

operation. Since the binary image is not clear for naked eye,

we use grayscale image data instead of binary data to stitch

two images. Stitching operation is realized with a

combinational logic. Control 8 block represents the control to

write the stitched data into memory 3. The yellow color

represents memory 3.

Fig. 7. Virtual Hardware of Area-based Image Stitching Platform.

https://doi.org/10.33851/JMIS.2019.6.1.7

Virtual Prototyping of Area-based Fast Image Stitching Algorithm

12

IV. COMPUTATIONAL COST

The computational cost of virtual hardware can be

calculated depends on the number of cycles taken to perform

each operation that is shown in Figure 7. We considered MxN

image to perform the analysis

Writing and reading operation in memory-1 and memory-2

is performed simultaneously. It takes 𝐌 × 𝐍 cycles to write

the grayscale image data into the memories, to read the

grayscale image data from the memories to convert into

binary data, reading the grayscale data (M × N), converting

grayscale data to binary data and writing the binary data (+1)

into the memories can be realized using pipelining. It takes

𝐌 × 𝐍 + 𝟏 cycles to read and write the converted binary data

into the memories. Reading KxK binary data bits to rescale

the binary image also takes M × N cycles. Again, we can

write the rescaled bit into the memory using pipelining.

Writing the rescaled data also takes 𝐌 × 𝐍 + 𝟏 cycles.

The number of cycles to read the binary data from the two

images to perform comparison (XOR operation, addition and

division) is given by.

𝑴

𝑲

𝟐
×

𝑵

𝑲
×(

𝑵

𝑲
+𝟏)

𝟐
 (1)

After comparison and finding the optimum overlap, to

stitch the images we need to read the grayscale image which

takes M*N cycles. To write the final stitched image data (i.e.,

to be displayed) takes (2M-1) * (2N-1) cycles. This equation

gives the worst case scenario of the overlapped area (i.e. if the

overlapped area is only one pixel). The total number of cycles

required to perform image stitching is given as.

𝟒 × (𝐌 × 𝐍) + 𝟐 + (
𝐌

𝐊

𝟐
×

𝐍

𝐊
×(

𝐍

𝐊
+𝟏)

𝟐
) + ((𝟐𝐌 − 𝟏) × (𝟐𝐍 − 𝟏)). (2)

Figure 8 shows the computational cost of stitching

1280x1024 sized image. We considered M=1280 and

N=1024 in the above analysis and calculated the number of

cycles required for each operation.

Fig. 8. Number of cycles required for each operation to stitch two

1280x1024 image.

V. RESULTS

The actual size and computation time of the area-based

image stitching, hardware can be estimated from the virtual

hardware. Table 1 shows the estimated computation time of

the area-based image stitching, hardware compared with the

software algorithm realized using MATLAB. The

computation time of the virtual hardware is obtained by using

equation 2 with different clock frequencies (250MHz,

500MHz, 750MHz and 1GHz) and image scaling factor K (2,

4, 8, and 16). The computation time decreases as the clock

frequencies and scaling factor K increases. However,

increasing K has the risk of losing the useful information

contained in the image, thus can lead to poor stitching results.

 Based on the simulation results, K=8 still gives good

stitching quality with relatively fast stitching time. With K=8

and clock frequency of 250 MHz, the computation time of the

virtual hardware shows 0.887 Sec which is 10x faster than

MATLAB

Table 1. Computation time of MATLAB and virtual hardware

platform for stitching two 1280X1024 images.

K

value

MATLAB

(sec)

Virtual Hardware (sec)

Clock Frequency

250 MHz 500MHz 750MHz 1GHz

2 599.06 215.2 107.6 71.736 53.802

4 51.77 13.516 6.758 4.503 3.379

8 8.2 0.887 0.443 0.295 0.221

16 3.351 0.0951 0.047 0.0317 0.0239

Figure 9 shows the result of two dimensional area-based

image stitching. The results are obtained from MATLAB. The

input images are shown in figure 9a, here grayscale images

are considered as input images, i.e., after converting into a

grayscale image to binary image, and the stitched image is

shown in figure 9b. It is observed that the stitching operation

is implemented precisely and there is no disruption near the

overlapped area in the stitched image. After stitching the

Journal of Multimedia Information System VOL. 6, NO. 1, March 2019 (pp. 7-14): ISSN 2383-7632(Online)

https://doi.org/10.33851/JMIS.2019.6.1.7

13

leftover area is filled with 0 values to make it a complete

image (left bottom and right top corners).

(a)

(b)

Fig. 9. Image stitching result of 1280x1024 images for K=8. (a)

input images (b) output image

VI. CONCLUSION

This work presented a virtual prototyping approach for a

fast area-based image stitching hardware platform. If

implemented with actual hardware (FPGA or Integrated

Circuit). The area-based image stitching algorithm has been

implemented in MATLAB and the result was shown. Further

the virtual hardware was implemented and the computation

cost of software and hardware implementation was discussed.

With clock frequency of 250MHz, the estimated computation

time of the proposed virtual hardware was 0.877sec, which was

10 times faster than the software-based image stitch platform

using MATLAB.

REFERENCES

[1] J. H. Chen, and C. M. Huang, “Image stitching on the

unmanned air vehicle in the indoor environment,” in Proc.

SICE Annual Conf., Aug. 2012, pp. 402-406.

[2] S. Chen, “QuickTime VR – An image based approach to

virtual environmental navigation,” SIGGRAPH 95, vol.

29, pp. 29-38, 1995.

[3] R. Szeliski and H. Shum, “Creating full view panoramic

image mosaics and environmental maps,” SIGGRAPH 97,

vol. 31, pp. 251-258, 1999.

[4] M. Brown and D. G. Lowe, “Automatic panoramic image

stitching using invariant features,” Int. J. Computer

Vision, vol. 74, pp. 59-73, 2007.

[5] M. Qasaimeh and A. Sagahyroon, “FPGA-Based Parallel

Hardware Architecture for Real-Time Image

Classification,” IEEE Transactions on Computational

Imaging, vol. 1, no. 1, pp, 56-70, March 2015.

[6] J. H. Wang and S. Zhong, “An Embedded System-on-

Chip Architecture for Real-time Visual Detection and

Matching,” IEEE Transaction on circuits and systems for

video technology, vol.24, no.3, pp.525-538, march 2014.

[7] S. Zhong and J. H. Wang, “A real-time embedded

architecture for SIFT,” Journal of Systems Architecture,

vol.59, pp. 16–29, 2013.

[8] V. Bonato and E. Marques, “A Parallel Hardware

Architecture for Scale and Rotation Invariant Feature

Detection,” IEEE Transactions on Circuits And systems

For Video Technology, vol. 18, no. 12, December 2008.

[9] T. V. Huynh, “Deep neural network accelerator based on

FPGA,” in Proc. IEEE Information and Computer

Science, Nov. 2017, pp. 254-257.

Authors

Lakshmi Kalyani Mudragada received the B-

Tech degree from Jawaharlal Nehru

Technological University Kakinada, Andhra

Pradesh, India in Electronics and

Communication Engineering in 2013, the M-

Tech degree from Jawaharlal Nehru

Technological University Kakinada, Andhra Pradesh, India in

VLSI Design in 2015. Pursing MS degree at University of

Akron, Akron, OH, in Electrical Engineering since 2017. Her

research interests include, image processing applications,

VLSI design and signal processing.

https://doi.org/10.33851/JMIS.2019.6.1.7

Virtual Prototyping of Area-based Fast Image Stitching Algorithm

14

Kye-Shin Lee(S’02–M’06) received the B.S.

degree from Korea University, Seoul, Korea, in

1992, the M.S. degree from Texas A&M

University, College Station, TX, USA, in 2002,

and the Ph.D. degree from the University of

Texas at Dallas, Richardson, TX, USA, in 2005,

all in electrical engineering. He was with Texas Instruments

Inc., Dallas, TX, USA, from 2005 to 2008. In 2009, he was

an Assistant Professor with the Department of Electronics,

Sun Moon University, Asan-si, Chungnam, Korea. He is

currently an Associate Professor with the Department of

Electrical and Computer Engineering, The University of

Akron, Akron, OH, USA. His research interests include

integrated circuits for sensors and image processing

applications.

Byung-Gyu Kim has received his BS degree

from Pusan National University, Korea, in

1996 and an MS degree from Korea Advanced

Institute of Science and Technology (KAIST)

in 1998. In 2004, he received a PhD degree in

the Department of Electrical Engineering and

Computer Science from Korea Advanced Institute of Science

and Technology (KAIST). In March 2004, he joined in the

real-time multimedia research team at the Electronics and

Telecommunications Research Institute (ETRI), Korea where

he was a senior researcher. In ETRI, he developed so many

real-time video signal processing algorithms and patents and

received the Best Paper Award in 2007. From February 2009

to February 2016, he was associate professor in the Division

of Computer Science and Engineering at SunMoon

University, Korea. In March 2016, he joined the Department

of Information Technology (IT) Engineering at Sookmyung

Women's University, Korea where he is currently an associate

professor. In 2007, he served as an editorial board member of

the International Journal of Soft Computing, Recent Patents

on Signal Processing, Research Journal of Information

Technology, Journal of Convergence Information

Technology, and Journal of Engineering and Applied

Sciences. Also, he is serving as an associate editor of Circuits,

Systems and Signal Processing (Springer), The Journal of

Supercomputing (Springer), The Journal of Real-Time Image

Processing (Springer), and International Journal of Image

Processing and Visual Communication (IJIPVC). From

March 2018, he is serving as the Editor-in-Chief of The

Journal of Multimedia Information System and associate

editor of IEEE Access Journal. He also served or serves as

Organizing Committee of CSIP 2011, a Co-organizer of

CICCAT2016/2017, and Program Committee Members of

many international conferences. He has received the Special

Merit Award for Outstanding Paper from the IEEE Consumer

Electronics Society, at IEEE ICCE 2012, Certification

Appreciation Award from the SPIE Optical Engineering in

2013, and the Best Academic Award from the CIS in 2014.

He has been honored as an IEEE Senior member in 2015. He

is serving as a professional reviewer in many academic

journals including IEEE, ACM, Elsevier, Springer, Oxford,

SPIE, IET, MDPI, and so on.

 He has published over 200 international journal and

conference papers, patents in his field. His research interests

include image and video signal processing for the content-

based image coding, video coding techniques, 3D video

signal processing, deep/reinforcement learning algorithm,

embedded multimedia system, and intelligent information

system for image signal processing. He is a senior member of

IEEE and a professional member of ACM, and IEICE.

