Fig. 1. Stages and approximate time span of wound healing process.
Fig. 2. Chemical structures of biopolymers used in wound dressings.
Table 1. Sources, biological roles and possible drawbacks of natural polymer wound dressings
참고문헌
- Aderibigbe, B. A. and Buyana, B. 2018. Alginate in wound dressings. Pharmaceutics 10, 42. https://doi.org/10.3390/pharmaceutics10020042
- Agrawal, P., Soni, S., Mittal, G. and Bhatnagar, A. 2014. Role of polymeric biomaterials as wound healing agents. Int. J. Low. Extrem. Wounds 13, 180-190. https://doi.org/10.1177/1534734614544523
- Ahmed, S. and Ikram, S. 2016. Chitosan based scaffolds and their applications in wound healing. Achiev. Life Sci. 10, 27-37.
- Alemdaroglu, C., Degim, Z., Celebi, N., Zor, F., Ozturk, S. and Erdogan, D. 2006. An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns 32, 319-327. https://doi.org/10.1016/j.burns.2005.10.015
- Alsberg, E., Anderson, K. W., Albeiruti, A., Franceschi, R. T. and Mooney, D. J. 2001. Cell-interactive alginate hydrogels for bone tissue engineering. J. Dent. Res. 80, 2025-2029. https://doi.org/10.1177/00220345010800111501
- Athanasiou, K. A., Niederauer, G. G. and Agrawal, C. M. 1996. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17, 93-102. https://doi.org/10.1016/0142-9612(96)85754-1
- Avila Rodriguez, M. I., Rodriguez Barroso, L. G. and Sanchez, M. L. 2018. Collagen: a review on its sources and potential cosmetic applications. J. Cosmet. Dermatol. 17, 20-26. https://doi.org/10.1111/jocd.12450
- Bellis, S. L. 2011. Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials 32, 4205-4210. https://doi.org/10.1016/j.biomaterials.2011.02.029
- Biagini, G., Bertani, A., Muzzarelli, R., Damadei, A., DiBenedetto, G., Belligolli, A., Riccotti, G., Zucchini, C. and Rizzoli, C. 1991. Wound management with N-carboxybutyl chitosan. Biomaterials 12, 281-286. https://doi.org/10.1016/0142-9612(91)90035-9
- Boateng, J. and Catanzano, O. 2015. Advanced therapeutic dressings for effective wound healing - a review. J. Pharm. Sci. 104, 3653-3680. https://doi.org/10.1002/jps.24610
- Bodnar, R. J. 2015. Chemokine regulation of angiogenesis during wound healing. Adv. Wound Care 4, 641-650. https://doi.org/10.1089/wound.2014.0594
- Braiman-Wiksman, L., Solomonik, I., Spira, R. and Tennenbaum, T. 2007. Novel insights into wound healing sequence of events. Toxicol. Pathol. 35, 767-779. https://doi.org/10.1080/01926230701584189
- Brett, D. 2008. A review of collagen and collagen-based wound dressings. Wounds 20, 347-356.
- Chan, L. W., Kim, C. H., Wang, X., Pun, S. H., White, N. J. and Kim, T. H. 2016. PolySTAT-modified chitosan gauzes for improved hemostasis in external hemorrhage. Acta Biomater. 31, 178-185. https://doi.org/10.1016/j.actbio.2015.11.017
- Chaudhari, A., Vig, K., Baganizi, D., Sahu, R., Dixit, S., Dennis, V., Singh, S., Pillai, S., Chaudhari, A. A., Vig, K., Baganizi, D. R., Sahu, R., Dixit, S., Dennis, V., Singh, S. R. and Pillai, S. R. 2016. Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. Int. J. Mol. Sci. 17, 1974. https://doi.org/10.3390/ijms17121974
- Chen, W. Y. and Abatangelo, G. 1999. Functions of hyaluronan in wound repair. Wound Repair Regen. 7, 79-89. https://doi.org/10.1046/j.1524-475X.1999.00079.x
- Chu, J., Shi, P., Yan, W., Fu, J., Yang, Z., He, C., Deng, X. and Liu, H. 2018. PEGylated graphene oxide-mediated quercetin-modified collagen hybrid scaffold for enhancement of mscs differentiation potential and diabetic wound healing. Nanoscale 10, 9547-9560. https://doi.org/10.1039/C8NR02538J
- Cremar, L., Gutierrez, J., Martinez, J., Materon, L., Gilkerson, R., Xu, F. and Lozano, K. 2018. Development of antimicrobial chitosan based nanofiber dressings for wound healing applications. Mashhad Univ. Med. Sci. 5, 6-14.
- Dabiri, G., Damstetter, E. and Phillips, T. 2016. Choosing a wound dressing based on common wound characteristics. Adv. Wound Care 5, 32-41. https://doi.org/10.1089/wound.2014.0586
- Degim, Z., Celebi, N., Sayan, H., Babul, A., Erdogan, D. and Take, G. 2002. An investigation on skin wound healing in mice with a taurine-chitosan gel formulation. Amino Acids 22, 187-198. https://doi.org/10.1007/s007260200007
- Dhivya, S., Padma, V. V. and Santhini, E. 2015. Wound dressings - a review. BioMedicine 5, 22. https://doi.org/10.7603/s40681-015-0022-9
- Dias, A. M. A., Braga, M. E. M., Seabra, I. J., Ferreira, P., Gil, M. H. and de Sousa, H. C. 2011. Development of natural-based wound dressings impregnated with bioactive compounds and using supercritical carbon dioxide. Int. J. Pharm. 408, 9-19. https://doi.org/10.1016/j.ijpharm.2011.01.063
- Ehrlich, H. 2000. Collagen considerations in scarring and regenerative repair, pp. 99-113. In: Garg, H. G. and Longaker, M. T. (eds.), Scarless Wound Healing. CRC Press: Boca Raton, FL, USA.
- El Fawal, G. F., Abu-Serie, M. M., Hassan, M. A. and Elnouby, M. S. 2018. Hydroxyethyl cellulose hydrogel for wound dressing: fabrication, characterization and in vitro evaluation. Int. J. Biol. Macromol. 111, 649-659. https://doi.org/10.1016/j.ijbiomac.2018.01.040
- Gao, F., Liu, Y., He, Y., Yang, C., Wang, Y., Shi, X. and Wei, G. 2010. Hyaluronan oligosaccharides promote excisional wound healing through enhanced angiogenesis. Matrix Biol. 29, 107-116. https://doi.org/10.1016/j.matbio.2009.11.002
- Gao, F., Yang, C. X., Mo, W., Liu, Y. W. and He, Y. Q. 2008. Hyaluronan oligosaccharides are potential stimulators to angiogenesis via RHAMM mediated signal pathway in wound healing. Clin. Investig. Med. 31, 106. https://doi.org/10.25011/cim.v31i3.3467
- Ghatak, S., Hascall, V. C., Rodriguez, R. M., Markwald, R. R. and Misra, S. 2017. Inflammation, wound healing, and fibrosis, pp. 195-209. In: Turksen, K. (ed.), Wound healing: Stem Cells Repair and Restorations, Basic and Clinical Aspects. Wiley-Blackwell: Hoboken, NJ, USA.
- Golebiewska, E. M. and Poole, A. W. 2015. Platelet secretion: from haemostasis to wound healing and beyond. Blood Rev. 29, 153-162. https://doi.org/10.1016/j.blre.2014.10.003
- Gonzalez, A. C. de O., Costa, T. F., Andrade, Z. de A., Medrado, A. R. A. P., Gonzalez, A. C. de O., Costa, T. F., Andrade, Z. de A. and Medrado, A. R. A. P. 2016. Wound healing - a literature review. An. Bras. Dermatol. 91, 614-620. https://doi.org/10.1590/abd1806-4841.20164741
- Gunatillake, P. A., Adhikari, R. and Gadegaard, N. 2003. Biodegradable synthetic polymers for tissue engineering. Eur. Cells Mater. 5, 1-16. https://doi.org/10.22203/eCM.v005a01
- Guo, S. and DiPietro, L. A. 2010. Factors affecting wound healing. J. Dent. Res. 89, 219-229. https://doi.org/10.1177/0022034509359125
- Gupta, S., Andersen, C., Black, J., de Leon, J., Fife, C., Lantis Ii, J. C., Niezgoda, J., Snyder, R., Sumpio, B., Tettelbach, W., Treadwell, T., Weir, D. and Silverman, R. P. 2017. Management of chronic wounds: diagnosis, preparation, treatment, and follow-up. Wounds a Compend. Clin. Res. Pract. 29, S19-S36.
- Gurtner, G. C., Werner, S., Barrandon, Y. and Longaker, M. T. 2008. Wound repair and regeneration. Nature 453, 314-321. https://doi.org/10.1038/nature07039
- Hakkarainen, T., Koivuniemi, R., Kosonen, M., Escobedo-Lucea, C., Sanz-Garcia, A., Vuola, J., Valtonen, J., Tammela, P., Makitie, A., Luukko, K., Yliperttula, M. and Kavola, H. 2016. Nanofibrillar cellulose wound dressing in skin graft donor site treatment. J. Control. Release 244, 292-301. https://doi.org/10.1016/j.jconrel.2016.07.053
- Hashemi Doulabi, A., Mirzadeh, H., Imani, M. and Samadi, N. 2013. Chitosan/polyethylene glycol fumarate blend film: physical and antibacterial properties. Carbohydr. Polym. 92, 48-56. https://doi.org/10.1016/j.carbpol.2012.09.002
- Hoenich, N. A. 2007. Cellulose for medical applications: past, present, and future. BioResources 1, 270-280. https://doi.org/10.15376/biores.1.2.270-280
- Houghton, P. J., Hylands, P. J., Mensah, A. Y., Hensel, A. and Deters, A. M. 2005. In vitro tests and ethnopharmacological investigations: wound healing as an example. J. Ethnopharmacol. 100, 100-107. https://doi.org/10.1016/j.jep.2005.07.001
- Hu, M., Sabelman, E. E., Cao, Y., Chang, J. and Hentz, V. R. 2003. Three-dimensional hyaluronic acid grafts promote healing and reduce scar formation in skin incision wounds. J. Biomed. Mater. Res. 67B, 586-592. https://doi.org/10.1002/jbm.b.20001
- Hu, Y., Zhang, Z., Li, Y., Ding, X., Li, D., Shen, C. and Xu, F. J. 2018. Dual-crosslinked amorphous polysaccharide hydrogels based on chitosan/alginate for wound healing applications. Macromol. Rapid Commun. 39, 1800069. https://doi.org/10.1002/marc.201800069
- Huang, J., Ren, J., Chen, G., Li, Z., Liu, Y., Wang, G. and Wu, X. 2018. Tunable sequential drug delivery system based on chitosan/hyaluronic acid hydrogels and plga microspheres for management of non-healing infected wounds. Mater. Sci. Eng. C 89, 213-222. https://doi.org/10.1016/j.msec.2018.04.009
- Huang, X., Li, L. D., Lyu, G. M., Shen, B. Y., Han, Y. F., Shi, J. L., Teng, J. L., Feng, L., Si, S. Y., Wu, J. H., Liu, Y. J., Sun, L. D. and Yan, C. H. 2018. Chitosan-coated cerium oxide nanocubes accelerate cutaneous wound healing by curtailing persistent inflammation. Inorg. Chem. Front. 5, 386-393. https://doi.org/10.1039/C7QI00707H
- Ishihara, M., Nakanishi, K., Ono, K., Sato, M., Kikuchi, M., Saito, Y., Yura, H., Matsui, T., Hattori, H., Uenoyama, M. and Kurita, A. 2002. Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials 23, 833-840. https://doi.org/10.1016/S0142-9612(01)00189-2
- Ishihara, M., Ono, K., Sato, M., Nakanishi, K., Saito, Y., Yura, H., Matsui, T., Hattori, H., Fujita, M., Kikuchi, M. and Kurita, A. 2001. Acceleration of wound contraction and healing with a photocrosslinkable chitosan hydrogel. Wound Repair Regen. 9, 513-521. https://doi.org/10.1046/j.1524-475x.2001.00513.x
- Jones, V., Grey, J. E. and Harding, K. G. 2006. Wound dressings. BMJ 332, 777-780. https://doi.org/10.1136/bmj.332.7544.777
- Kamoun, E. A., Kenawy, E. R. S. and Chen, X. 2017. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 8, 217-233. https://doi.org/10.1016/j.jare.2017.01.005
- Karri, V. V. S. R., Kuppusamy, G., Talluri, S. V., Mannemala, S. S., Kollipara, R., Wadhwani, A. D., Mulukutla, S., Raju, K. R. S. and Malayandi, R. 2016. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int. J. Biol. Macromol. 93, 1519-1529. https://doi.org/10.1016/j.ijbiomac.2016.05.038
- Koehler, J., Brandl, F. P. and Goepferich, A. M. 2018. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur. Polym. J. 100, 1-11. https://doi.org/10.1016/j.eurpolymj.2017.12.046
- Korting, H., Schollmann, C. and White, R. 2011. Management of minor acute cutaneous wounds: importance of wound healing in a moist environment. J. Eur. Acad. Dermatol. Venereol. 25, 130-137. https://doi.org/10.1111/j.1468-3083.2010.03775.x
- Landen, N. X., Li, D. and Stahle, M. 2016. Transition from inflammation to proliferation: a critical step during wound healing. Cell. Mol. Life Sci. 73, 3861-3885. https://doi.org/10.1007/s00018-016-2268-0
- Laurens, N., Koolwijk, P. and De Maat, M. P. M. 2006. Fibrin structure and wound healing. J. Thromb. Haemost. 4, 932-939. https://doi.org/10.1111/j.1538-7836.2006.01861.x
- LeBaron, R. G. and Athanasiou, K. A. 2000. Extracellular matrix cell adhesion peptides: functional applications in orthopedic materials. Tissue Eng. 6, 85-103. https://doi.org/10.1089/107632700320720
- Lee, K. Y. and Mooney, D. J. 2012. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106-126. https://doi.org/10.1016/j.progpolymsci.2011.06.003
- Li, H., Xue, Y., Jia, B., Bai, Y., Zuo, Y., Wang, S., Zhao, Y., Yang, W. and Tang, H. 2018. The preparation of hyaluronic acid grafted pullulan polymers and their use in the formation of novel biocompatible wound healing film. Carbohydr. Polym. 188, 92-100. https://doi.org/10.1016/j.carbpol.2018.01.102
- Li, J., Chen, J. and Kirsner, R. 2007. Pathophysiology of acute wound healing. Clin. Dermatol. 25, 9-18. https://doi.org/10.1016/j.clindermatol.2006.09.007
- Li, X., Chen, S., Zhang, B., Li, M., Diao, K., Zhang, Z., Li, J., Xu, Y., Wang, X. and Chen, H. 2012. In situ injectable nano-composite hydrogel composed of curcumin, n,o-carboxymethyl chitosan and oxidized alginate for wound healing application. Int. J. Pharm. 437, 110-119. https://doi.org/10.1016/j.ijpharm.2012.08.001
- Li, X., Nan, K., Li, L., Zhang, Z. and Chen, H. 2012. In vivo evaluation of curcumin nanoformulation loaded methoxy poly(ethylene glycol)-graft-chitosan composite film for wound healing application. Carbohydr. Polym. 88, 84-90. https://doi.org/10.1016/j.carbpol.2011.11.068
- Lin, W. C., Lien, C. C., Yeh, H. J., Yu, C. M. and Hsu, S. 2013. Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr. Polym. 94, 603-611. https://doi.org/10.1016/j.carbpol.2013.01.076
- Lindholm, C. and Searle, R. 2016. Wound management for the 21st century: combining effectiveness and efficiency. Int. Wound J. 13, 5-15. https://doi.org/10.1111/iwj.12623
- Liu, Y., Sui, Y., Liu, C., Liu, C., Wu, M., Li, B. and Li, Y. 2018. A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing. Carbohydr. Polym. 188, 27-36. https://doi.org/10.1016/j.carbpol.2018.01.093
- Lloyd, L. L., Kennedy, J. F., Methacanon, P., Paterson, M. and Knill, C. J. 1998. Carbohydrate polymers as wound management aids. Carbohydr. Polym. 37, 315-322. https://doi.org/10.1016/S0144-8617(98)00077-0
- Martin, P. and Nunan, R. 2015. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br. J. Dermatol. 173, 370-378. https://doi.org/10.1111/bjd.13954
- Miao, J., Pangule, R. C., Paskaleva, E. E., Hwang, E. E., Kane, R. S., Linhardt, R. J. and Dordick, J. S. 2011. Lysostaphinfunctionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials 32, 9557-9567. https://doi.org/10.1016/j.biomaterials.2011.08.080
- Minagawa, T., Okamura, Y., Shigemasa, Y., Minami, S. and Okamoto, Y. 2007. Effects of molecular weight and deacetylation degree of chitin/chitosan on wound healing. Carbohydr. Polym. 67, 640-644. https://doi.org/10.1016/j.carbpol.2006.07.007
- Minutti, C. M., Knipper, J. A., Allen, J. E. and Zaiss, D. M. W. 2017. Tissue-specific contribution of macrophages to wound healing. Semin. Cell Dev. Biol. 61, 3-11. https://doi.org/10.1016/j.semcdb.2016.08.006
- Mogosanu, G. D. and Grumezescu, A. M. 2014. Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharm. 463, 127-136. https://doi.org/10.1016/j.ijpharm.2013.12.015
- Mohamad, N., Mohd Amin, M. C. I., Pandey, M., Ahmad, N. and Rajab, N. F. 2014. Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr. Polym. 114, 312-320. https://doi.org/10.1016/j.carbpol.2014.08.025
- Moran, J. M., Pazzano, D. and Bonassar, L. J. 2003. Characterization of polylactic acid-polyglycolic acid composites for cartilage tissue engineering. Tissue Eng. 9, 63-70. https://doi.org/10.1089/107632703762687546
- Morgan, C. and Nigam, Y. 2013. Naturally derived factors and their role in the promotion of angiogenesis for the healing of chronic wounds. Angiogenesis 16, 493-502. https://doi.org/10.1007/s10456-013-9341-1
- Moura, L. I. F., Dias, A. M. A., Leal, E. C., Carvalho, L., de Sousa, H. C. and Carvalho, E. 2014. Chitosan-based dressings loaded with neurotensin-an efficient strategy to improve early diabetic wound healing. Acta Biomater. 10, 843-857. https://doi.org/10.1016/j.actbio.2013.09.040
- Murakami, K., Aoki, H., Nakamura, S., Nakamura, S., Takikawa, M., Hanzawa, M., Kishimoto, S., Hattori, H., Tanaka, Y., Kiyosawa, T., Sato, Y. and Ishihara, M. 2010. Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31, 83-90. https://doi.org/10.1016/j.biomaterials.2009.09.031
- Muxika, A., Etxabide, A., Uranga, J., Guerrero, P. and de la Caba, K. 2017. Chitosan as a bioactive polymer: processing, properties and applications. Int. J. Biol. Macromol. 105, 1358-1368. https://doi.org/10.1016/j.ijbiomac.2017.07.087
- Obara, K., Ishihara, M., Ishizuka, T., Fujita, M., Ozeki, Y., Maehara, T., Saito, Y., Yura, H., Matsui, T., Hattori, H., Kikuchi, M. and Kurita, A. 2003. Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. Biomaterials 24, 3437-3444. https://doi.org/10.1016/S0142-9612(03)00220-5
- Ong, S. Y., Wu, J., Moochhala, S. M., Tan, M. H. and Lu, J. 2008. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 29, 4323-4332. https://doi.org/10.1016/j.biomaterials.2008.07.034
- Paul, W. and Sharma, C. P. 2004. Chitosan and alginate wound dressings: a short review. Trends Biomater. Artif. Organs 18, 18-23.
- Pereira, R. F. and Bartolo, P. J. 2016. Traditional therapies for skin wound healing. Adv. Wound Care 5, 208-229. https://doi.org/10.1089/wound.2013.0506
- Pereira, R., Mendes, A. and Bartolo, P. 2013. Alginate/aloe vera hydrogel films for biomedical applications. Procedia CIRP 5, 210-215. https://doi.org/10.1016/j.procir.2013.01.042
- Pilcher, B. K., Dumin, J. A., Sudbeck, B. D., Krane, S. M., Welgus, H. G. and Parks, W. C. 1997. The activity of collagenase-1 is required for keratinocyte migration on a type i collagen matrix. J. Cell Biol. 137, 1445-1457. https://doi.org/10.1083/jcb.137.6.1445
- Powers, J. G., Higham, C., Broussard, K. and Phillips, T. J. 2016. Wound healing and treating wounds: chronic wound care and management. J. Am. Acad. Dermatol. 74, 607-625. https://doi.org/10.1016/j.jaad.2015.08.070
- Rathi, S., Saka, R., Domb, A. J. and Khan, W. 2019. Proteinbased bioadhesives and bioglues. Polym. Adv. Technol. 30, 217-234. https://doi.org/10.1002/pat.4465
- Revelli, L., Tempera, S. E., Bellantone, C., Raffaelli, M. and Lombardi, C. P. 2016. Topical hemostatic agents, pp. 249-259. In: Lombardi, C. P. and Bellantone R. (eds.), Minimally Invasive Therapies for Endocrine Neck Diseases. Springer Publishing: Cham, Switzerland.
- Rho, K. S., Jeong, L., Lee, G., Seo, B. M., Park, Y. J., Hong, S. D., Roh, S., Cho, J. J., Park, W. H. and Min, B. M. 2006. Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27, 1452-1461. https://doi.org/10.1016/j.biomaterials.2005.08.004
- Rodriguez, D., Morrison, C. J. and Overall, C. M. 2010. Matrix metalloproteinases: what do they not do? new substrates and biological roles identified by murine models and proteomics. Biochim. Biophys. Acta 1803, 39-54. https://doi.org/10.1016/j.bbamcr.2009.09.015
- Roh, D. H., Kang, S. Y., Kim, J. Y., Kwon, Y. B., Young Kweon, H., Lee, K. G., Park, Y. H., Baek, R. M., Heo, C. Y., Choe, J. and Lee, J. H. 2006. Wound healing effect of silk fibroin/alginate-blended sponge in full thickness skin defect of rat. J. Mater. Sci. Mater. Med. 17, 547-552. https://doi.org/10.1007/s10856-006-8938-y
- Shi, L., Zhao, Y., Xie, Q., Fan, C., Hilborn, J., Dai, J. and Ossipov, D. A. 2018. Moldable hyaluronan hydrogel enabled by dynamic metal-bisphosphonate coordination chemistry for wound healing. Adv. Healthc. Mater. 7, 1700973. https://doi.org/10.1002/adhm.201700973
- Simoes, D., Miguel, S. P., Ribeiro, M. P., Coutinho, P., Mendonca, A. G. and Correia, I. J. 2018. Recent advances on antimicrobial wound dressing: a review. Eur. J. Pharm. Biopharm. 127, 130-141. https://doi.org/10.1016/j.ejpb.2018.02.022
- Singer, A. J. and Clark, R. A. F. 1999. Cutaneous wound healing. N. Engl. J. Med. 341, 738-746. https://doi.org/10.1056/NEJM199909023411006
- Slominski, A. T., Zmijewski, M. A., Semak, I., Kim, T. K., Janjetovic, Z., Slominski, R. M. and Zmijewski, J. W. 2017. Melatonin, mitochondria, and the skin. Cell. Mol. Life Sci. 74, 3913-3925. https://doi.org/10.1007/s00018-017-2617-7
- Squarize, C. H., Castilho, R. M., Bugge, T. H. and Gutkind, J. S. 2010. Accelerated wound healing by mtor activation in genetically defined mouse models. PLoS One 5, e10643. https://doi.org/10.1371/journal.pone.0010643
- Stone, C. A., Wright, H., Devaraj, V. S., Clarke, T. and Powell, R. 2000. Healing at skin graft donor sites dressed with chitosan. Br. J. Plast. Surg. 53, 601-606. https://doi.org/10.1054/bjps.2000.3412
- Sun, L., Gao, W., Fu, X., Shi, M., Xie, W., Zhang, W., Zhao, F. and Chen, X. 2018. Enhanced wound healing in diabetic rats by nanofibrous scaffolds mimicking the basketweave pattern of collagen fibrils in native skin. Biomater. Sci. 6, 340-349. https://doi.org/10.1039/C7BM00545H
- Tamayol, A., Mohammadi, M. H., Bagherifard, S., Khademhosseini, A., Akbari, M., Serex, L., Faramarzi, N. and Mostafalu, P. 2016. Textile technologies and tissue engineering: a path toward organ weaving. Adv. Healthc. Mater. 5, 751-766. https://doi.org/10.1002/adhm.201500517
- Tamer, T. M., Valachova, K., Hassan, M. A., Omer, A. M., El-Shafeey, M., Mohy Eldin, M. S. and Soltes, L. 2018. Chitosan/hyaluronan/edaravone membranes for anti-inflammatory wound dressing: in vitro and in vivo evaluation studies. Mater. Sci. Eng. C 90, 227-235. https://doi.org/10.1016/j.msec.2018.04.053
- Thomas, S. 2000. Alginate dressings in surgery and wound management - part 1. J. Wound Care 9, 56-60. https://doi.org/10.12968/jowc.2000.9.2.26338
- Tsala, D. E., Amadou, D. and Habtemariam, S. 2013. Natural wound healing and bioactive natural products. Phytopharmacology 4, 532-560.
- Ueno, H., Mori, T. and Fujinaga, T. 2001. Topical formulations and wound healing applications of chitosan. Adv. Drug Deliv. Rev. 52, 105-15. https://doi.org/10.1016/S0169-409X(01)00189-2
- Wagenhauser, M. U., Mulorz, J., Ibing, W., Simon, F., Spin, J. M., Schelzig, H. and Oberhuber, A. 2016. Oxidized (non)-regenerated cellulose affects fundamental cellular processes of wound healing. Sci. Rep. 6, 32238. https://doi.org/10.1038/srep32238
- Wahl, D. A., Sachlos, E., Liu, C. and Czernuszka, J. T. 2007. Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering. J. Mater. Sci. Mater. Med. 18, 201-209.
- Wang, L., Khor, E., Wee, A. and Lim, L. Y. 2002. Chitosan-alginate pec membrane as a wound dressing: assessment of incisional wound healing. J. Biomed. Mater. Res. 63, 610-618. https://doi.org/10.1002/jbm.10382
- WHO 2010. Injuries and violence: The facts. Available at: http://www.who.int/violence_injury_prevention/key_facts/en/ (Accessed: 12 February 2019).
- Wu, J., Zheng, Y., Song, W., Luan, J., Wen, X., Wu, Z., Chen, X., Wang, Q. and Guo, S. 2014. In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slowreleased antimicrobial wound dressing. Carbohydr. Polym. 102, 762-771. https://doi.org/10.1016/j.carbpol.2013.10.093
- Xie, H., Chen, X., Shen, X., He, Y., Chen, W., Luo, Q., Ge, W., Yuan, W., Tang, X., Hou, D., Jiang, D., Wang, Q., Liu, Y., Liu, Q. and Li, K. 2018. Preparation of chitosan-collagen-alginate composite dressing and its promoting effects on wound healing. Int. J. Biol. Macromol. 107, 93-104. https://doi.org/10.1016/j.ijbiomac.2017.08.142
- Xue, M. and Jackson, C. J. 2015. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv. Wound Care 4, 119-136. https://doi.org/10.1089/wound.2013.0485
- Yang, D. and Jones, K. S. 2009. Effect of alginate on innate immune activation of macrophages. J. Biomed. Mater. Res. Part A 90A, 411-418. https://doi.org/10.1002/jbm.a.32096
- Yang, X., Liu, W., Li, N., Wang, M., Liang, B., Ullah, I., Luis Neve, A., Feng, Y., Chen, H. and Shi, C. 2017. Design and development of polysaccharide hemostatic materials and their hemostatic mechanism. Biomater. Sci. 5, 2357-2368. https://doi.org/10.1039/C7BM00554G
- Yew, T. L., Hung, Y. T., Li, H. Y., Chen, H. W., Chen, L. L., Tsai, K. S., Chiou, S. H., Chao, K. C., Huang, T. F., Chen, H. L. and Hung, S. C. 2011. Enhancement of wound healing by human multipotent stromal cell conditioned medium: the paracrine factors and p38 mapk activation. Cell Transplant. 20, 693-706. https://doi.org/10.3727/096368910X550198
- Yildirim, S., Ozener, H. O., Dogan, B. and Kuru, B. 2017. Effect of topically-applied hyaluronic-acid on pain and palatal epithelial wound healing: an examiner-blind, randomized, controlled clinical trial. J. Periodontol. 89, 1-14. https://doi.org/10.1002/jper.10059
- Younes, I., Rinaudo, M., Younes, I. and Rinaudo, M. 2015. Chitin and chitosan preparation from marine sources. structure, properties and applications. Mar. Drugs 13, 1133-1174. https://doi.org/10.3390/md13031133
- Zhang, D. L., Gu, L. J., Liu, L., Wang, C. Y., Sun, B. S., Li, Z. and Sung, C. K. 2009. Effect of wnt signaling pathway on wound healing. Biochem. Biophys. Res. Commun. 378, 149-151. https://doi.org/10.1016/j.bbrc.2008.11.011
- Zhou, Q., Kang, H., Bielec, M., Wu, X., Cheng, Q., Wei, W. and Dai, H. 2018. Influence of different divalent ions crosslinking sodium alginate-polyacrylamide hydrogels on antibacterial properties and wound healing. Carbohydr. Polym. 197, 292-304. https://doi.org/10.1016/j.carbpol.2018.05.078