DOI QR코드

DOI QR Code

Free Radical Scavenging, Cytotoxic Effects, and Flavonoid Content of Fractions from Leaves of Lycopus lucidus Turcz.

택란 잎 추출물의 라디칼 소거활성과 세포독성효과 및 플라보노이드 함량

  • Na, Eun (Ocean Science and Technology School, Korea Maritime and Ocean University) ;
  • Lee, Jung Woo (Division of Marine Bioscience, Korea Maritime and Ocean University) ;
  • Lim, Sun Young (Division of Marine Bioscience, Korea Maritime and Ocean University)
  • 나은 (한국해양대학교 해양과학기술전문대학원) ;
  • 이정우 (한국해양대학교 해양생명과학부) ;
  • 임선영 (한국해양대학교 해양생명과학부)
  • Received : 2018.10.09
  • Accepted : 2019.01.08
  • Published : 2019.03.30

Abstract

The free radical scavenging, cytotoxic effects, and flavonoid content of fractions from Lycopus lucidus Turcz leaves were here investigated. The flavonoid contents of 85% methanol (MeOH) and n-butanol (BuOH) fractions of the leaves were 41.5 mg/g and 77.2 mg/g, respectively. In DPPH and ABTs+ assays, 85% MeOH and n-BuOH fractions from the L. lucidus Turcz leaves had a greater scavenging effect (p<0.05). The n-BuOH fraction (0.5 mg/ml concentration) had scavenging effects of 88% and 92% in the DPPH and ABTs+ assays, respectively (p<0.05). Cell viability tests showed that treatment with L. lucidus Turcz leaf fractions caused cytotoxicity in the growth of AGS, HT-29, and HT-1080 cancer cells. Of the different fractions, the 85% MeOH sample displayed the highest cytotoxic activity; the $IC_{50}$ values of this fraction against AGS, HT-1080, and HT-29 cancer cells were 0.03 mg/ml, 0.14 mg/ml, and 0.16 mg/ml, respectively. These biological results indicate that the n-BuOH fraction was more effective in anti-oxidant activity while the 85% MeOH fraction was stronger in cytotoxic effects, and they suggest that these two fractions from L. lucidus Turcz leaves may contain valuable bioactive compounds, such as flavonoids.

본 연구에서는 택란 잎에 대한 다양한 생리활성을 규명하기 위하여 택란 잎을 극성이 다른 용매로 분획하여 분획물의 플라보노이드 함량을 측정하고 택란 잎 분획물에 의한 라디칼 소거활성과 세포독성 효과를 규명하고자 하였다. 택란 잎 85% MeOH 및 n-BuOH분획물들의 총 플라보노이드 함량은 각각 $41.5{\pm}0.00mg/g$$77.2{\pm}0.01mg/g$으로 n-BuOH 분획물의 총 플라보노이드 함량이 가장 높았음을 알 수 있었다. DPPH assay에서 택란 잎 n-BuOH 분획물의 활성산소 소거능이 가장 우수하였고 다음으로 85% MeOH 분획물에 의한 소거활성이 높았다(p<0.05). 각 분획물들의 $IC_{50}$값은 n-Hexane 9.76 mg/ml, 85% MeOH 0.50 mg/ml, n-BuOH 0.03 mg/ml 및 water 0.78 mg/ml로 나타났다. 또한 택란 잎 85% aq. MeOH 및 n-BuOH 분획물들에 의한 ABTs+소거활성은 각각 89.3% 및 92.1%이었으며 대조군인BHT와 L-ascorbic acid와 유사한 값을 나타내었다(p<0.05). ABTs+ assay에서 각 분획물들의 $IC_{50}$값은 n-Hexane 0.96 mg/ml, 85% MeOH 0.16 mg/ml, n-BuOH 0.01 mg/ml 및 water 0.31 mg/ml로 나타났다. 택란 잎 n-Hexane, 85% MeOH, n-BuOH 및 water 분획물들은 농도의존적으로 암세포들에 대한 세포독성 효과를 나타내었으며 분획물들 중 특히 n-Hexane과 85% MeOH 분획물들에 의한 세포독성 효과가 가장 높았다. AGS 암세포에 대한 택란 잎 n-Hexane, 85% MeOH, n-BuOH 및 water 분획물들의 $IC_{50}$ 값은 각각 0.18, 0.03, 0.62 및 0.12 mg/ml이었고 HT-29 암세포에 대한 $IC_{50}$ 값은 각각 0.26, 0.16, 0.60 및 1.14 mg/ml이었다. HT-1080 암세포에서 택란 잎n-Hexane, 85% MeOH, n-BuOH 및 water 분획물들의 $IC_{50}$ 값은 각각 0.34, 0.14, 0.48, 및 1.05 mg/ml이었다. 따라서 본 연구결과로부터 택란 잎 n-BuOH 분획물은 자유라디칼 소거활성에 효과적이었고 n-Hexane과 85% MeOH 분획물들은 높은 세포독성 효과를 나타내었으며 향후 택란 잎을 이용한 식품개발을 위한 기초자료를 제시하고자 한다.

Keywords

SMGHBM_2019_v29n3_337_f0001.png 이미지

Fig. 1. Effect of fractions from L. lucidus Turcz. Leaves on GSH levels in HT1080 cells.1)

SMGHBM_2019_v29n3_337_f0002.png 이미지

Fig. 2. Effect of fractions from L. lucidus Turcz. Leaves on the cell viability of AGS gastric cancer cells.1)

SMGHBM_2019_v29n3_337_f0003.png 이미지

Fig. 3. Effect of fractions from L. lucidus Turcz. Leaves on the cell viability of HT-29 human colon cancer cells.1)

SMGHBM_2019_v29n3_337_f0004.png 이미지

Fig. 4. Effect of fractions from L. lucidus Turcz. Leaves on the cell viability of HT-1080 human fibrosarcoma cells.1)

Table 1. Contents of total flavonoids of fractions from L. lucidus Turcz. leaves

SMGHBM_2019_v29n3_337_t0001.png 이미지

Table 2. DPPH radical scavenging effect of fractions from L. lucidus Turcz. leaves

SMGHBM_2019_v29n3_337_t0002.png 이미지

Table 3. ABTs+ radical scavenging effect of fractions from L. lucidus Turcz. leaves

SMGHBM_2019_v29n3_337_t0003.png 이미지

References

  1. Chae, S. K., Kang, G. S., Ma, S. J., Bang, K. W., Oh, M. M. and Oh, S. H. 2002. Standard food analysis. Jigu publishing Co. Paju, Korea p 381-382.
  2. Chen, H. H., Muranmoto, K., Yamauchi, F., Fujimoto, K. and Nokihara, K. 1995. Antioxidative properties of histidine-containing peptides designed from peptide fragment found in the digests of a soybean protein. J. Agric. Food Chem. 46, 49-53. https://doi.org/10.1021/jf970649w
  3. Cook, N. C. and Samman, S. 1996. Flavonodis-chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem. 7, 66-76. https://doi.org/10.1016/0955-2863(95)00168-9
  4. Dastiewicz, J. B., Depeint, F., Viornery, L., Bayet, C., Comte-Sarrazin, G., Comte, G., Gee, J. M., Johnson, I. T., Ndjoko, K., Hostettmann, K. and Barron, D. 2005. Effects of flavonoids on cell proliferation and caspase Activation in a Human colonic cell line HT29: An SAR study. J. Med. Chem. 48, 2790-2804. https://doi.org/10.1021/jm040770b
  5. Denizot, F. and Lang, R. 1986. Rapid colorimetric assay for cell growth and survival.Modification to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 89, 271-277. https://doi.org/10.1016/0022-1759(86)90368-6
  6. Fialova, S., Slobodnikova, L., Veizerova, L. and Grancai, D. 2015. Lycopus europaeus: Phenolic fingerprint, antioxidant activity and antimicrobial effect on clinical Staphylococus aureus strains. Nat. Prod. Res. 29, 2271-2274. https://doi.org/10.1080/14786419.2015.1010086
  7. Hwang, B. Y., Chai, H. B., Kardono, L. B. S., Riswan, S., Farnsworth, N. R., Cordell, G. A., Pezzuto, J. M. and Kinghorn, A. D. 2003. Cytotoxicity triterpenes from the twigs of Celtis philippinensis. Phytochemistry 62, 197-201. https://doi.org/10.1016/S0031-9422(02)00520-4
  8. Kim, D. Y. and Ghil, S. H. 2009. Effect of Lycopus lucidus Trucz. on cell growth of human breast cancer cells, MCF-7. J. Exo. Biomed. Sci. 15, 147-152.
  9. Kim J. W., Moon, B. S., Park, Y. M., Ryoo, I. J., Nguyen, T. C., Yoo, I. D. and Kim, J. P. 2005. Structures and antioxidant activity of diketopiperazines isolated from the mushroom Sarcodon aspratus. J. Kor. Soc. Appl. Biol. Chem. 48, 93-97.
  10. Kim, K. Y., Oh, T. W., Ma, J. J. and Park, K. I. 2018. Ethanol extract of Lycopus Lucidus Turcz. ex Benth inhibits metastasis by downregulation of Runx-2 in mouse colon cancer cells. Evidence-Based Complementary Alter. Med. doi.org/10.1155/ 2018/9513290.
  11. Kim, M. C., Lee, H. J., Lim, B., Ha, K. T., Kim, S. Y. So, I. and Kim, B. J. 2014. Quercetin induces apoptosis by inhibiting MAPKs and TRPM7 channels in AGS cells. Inter. J. Mol. Med. 33, 1657-1663. https://doi.org/10.3892/ijmm.2014.1704
  12. Kong, C. S., Um, Y. R., Lee, J. I., Kim, Y. A., Lee, J. S. and Seo, Y. W. 2008. Inhibition effect of extracts and its solvent fractions isolated from Limonium tetragonum on the growth of human cancer cells. Kor. J. Biotechnol. Bioeng. 23, 177-182.
  13. Malik, A. and Yuldashev, P. 2002. Flavonoids of Lycopus lucidus. Chem. Nat. Comp. 38, 104-105. https://doi.org/10.1023/A:1015762605965
  14. Lee, J. M., Lee, S. H. and Kim, H. M. 2000. Use of oriental herbs as medical food. Food Industry Nutr. 5, 50-56.
  15. Lee, J. W., Wu, W. and Lim, S. Y. 2018. Effect of extracts from Stachys sieboldii Miq. on cellular reactive oxygen species and glutathione production and genomic DNA oxidation. Asian Pacific J. Tropical Biomed. 8, 485-489. https://doi.org/10.4103/2221-1691.244139
  16. Lee, M. R., Yang, H. J., Park, K. I. and Ma, J. Y. 2019. Lycopus lucidus Turz. Ex Benth. Attenuates free fatty acid-induced steatosis in HepG2 cells and non-alcoholic fatty liver disease in high-fat diet-induced obese mice. Phytomed. 55, 14-22. https://doi.org/10.1016/j.phymed.2018.07.008
  17. Lee, S. O., Lee, H., J., Yu, M. H., Im, H., G. and Lee, I. S. 2005. Total polyphenol contents and antioxidant activities of methanol extracts from vegetables produced in Ullinginsland. Kor. J. Food Sci. Technol. 37, 233-240.
  18. Lee, W. S., Im, K. R., Park, Y. D., Sung N. D. and Jeong, T. S. 2006. Human ACAT-1 and ACAT-2 inhibitory activities of pentacyclic triterpenes from the leaves of Lycopus lucidus Turcz. Biol. Pharm. Bull. 29, 382-384. https://doi.org/10.1248/bpb.29.382
  19. Lee, Y. J., Kang, D. G., Kim, J. S. and Lee, H. S. 2008. Lycopus lucidus inhibits high glucose-induced vascular inflammation in human umbilical vein endothelial. Vascul. Pharmacol. 48, 38-46. https://doi.org/10.1016/j.vph.2007.11.004
  20. Lu, Y. H., Huang, J. H., Li, Y., Ma, T., Sang, P., Wang, W. and Gao, C. 2015. Variation in nutritional compositions, antioxidant activity and microstructure of Lycopus lucidus root at different harvest times. Food Chem. 183, 91-100. https://doi.org/10.1016/j.foodchem.2015.03.033
  21. Park, H. J., Jin, S., Oh, Y. N., Yun, S. G., Lee, J. Y., Kwon, H. J. and Kim, B. W. 2013. Induction of G1 arrest by methanol extract of Lycopus lucidusin human lung adenocarcinoma A549 cells. J. Life Sci. 23, 1109-1117. https://doi.org/10.5352/JLS.2013.23.9.1109
  22. Poot, M., Verkerk, A., Koster, J. F. and Jongkind, J. F. 1986. De novo synthesis of glutathione in human fibroblasts during in vitro ageing and in some metabolic diseases as measured by a flow cytometric method. Biochim. Biophys. Acta 883, 580-584. https://doi.org/10.1016/0304-4165(86)90300-4
  23. Proestos, C., Boziaris, I. S., Nychas, G. J. E. and Komaitis, M. 2004. Analysis of flavonoids and phenolic acids in Greek aromatic plants: investigation of their antioxidant capacity and antimicrobial activity. Food Chem. 95, 664-671. https://doi.org/10.1016/j.foodchem.2005.01.049
  24. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  25. Rice-Evans, C. A., Miller, N. J. and Paganga, G. 1997. Antixoxidant properties of phenolic compounds. Trend Plant Sci. 2, 152-159. https://doi.org/10.1016/S1360-1385(97)01018-2
  26. Song, Y. J., Chang, J. P. and Yoo, J. H. 2016. Antioxidant activities of water extracts from different parts of Lycopus lucidusTurcz. ex Benth. Kor. J. Herbaol. 31, 21-28. https://doi.org/10.6116/kjh.2016.31.6.21.
  27. Takada, Y. and Aggarwal, B. B. 2003. Betulinic acid suppresses carcinogen-induced NF-kappa B activation through inhibition of 1 kappa B alpha kinase and p65 phosphorylation: abrogation of cyclooxygenase-2 and matrix metallopopretease-9. J. Immunol. 171, 3278-3286. https://doi.org/10.4049/jimmunol.171.6.3278
  28. Theodoratou, E., Kyle, J., Cetnarskyj, R., Farrington, S. M., Tenesa, A., Barnetson, R., Porteous, M., Dunlop, M. and Campbell, H. 2007. Dietary flavonoids and the risk of colorectal cancer. Cancer Epidemiol. Bomarkers Prev. 16, 684-693. https://doi.org/10.1158/1055-9965.EPI-06-0785
  29. Tsao, R. and Deng, Z. 2004. Separation procedures for naturally occurring antioxidant phytochemiclas. J. Chromatogr. B 812, 85-99. https://doi.org/10.1016/S1570-0232(04)00764-0
  30. Xu, M., Chen, Y. M., Huang, J., Fang, Y. J., Huang, W. Q., Yan, B., Lu, M. S., Pan Z. Z. and Zhang, G. X. 2016. Flavonoid intake from vegetables and fruits is inversely associated with colorectal with colorectal cancer risk: a case-control study in China. Br. J. Nutr. 116, 1275-1287. https://doi.org/10.1017/S0007114516003196
  31. Yang, M. O. 2017. Antioxidant properties of hot water extract of Lycopus lucidus Turcz Tubers. Kor. J. Community Living Sci. 28, 103-113. https://doi.org/10.7856/kjcls.2017.28.1.103
  32. Yang, X., Lv, Y., Tian, L. and Zhao, Y. Composition and systemic immune activity of the polysaccharides from an herbal tea (Lycopus lucidusTurcz.). J. Agric. Food Chem. 58, 6075-6080. https://doi.org/10.1021/jf101061y
  33. Yoshimoto, M., Oluno, S., Yamaguchi, M. and Yamakawa, O. 2001. Antimutagenicity of deacylatedanthocyanis in purple sweet potato. Biosci. Biotechnol. Biochem. 65, 1652-1655. https://doi.org/10.1271/bbb.65.1652
  34. Yoon, J. J., Lee, Y. J., Kim, J. S., Kang, D. G. and Lee, H. S. 2010. Protective role of betulinic acid on TNF-${\alpha}$-induced cell adhesion molecules in vascular endothelial cells. Biochem. Biophy. Res. Com. 391, 96-101. https://doi.org/10.1016/j.bbrc.2009.11.009
  35. Yun, Y., Han, S., Park, E., Yim, D., Lee, S., Lee, C. K., Cho, K. and Kim, K. 2003. Immunomodulatory activity of betulinic acid by producing pro-inflammatory cytokines and activation of macrophages. Arch. Pharm. Res. 26, 1087-1095. https://doi.org/10.1007/BF02994763