Fig. 1. Effect of methylene chloride (MC) and methanol (MeOH) extracts from C. soldanella on cell cytotoxicity (A) and the production of MMP-2 (B) and MMP-9 (C) in PMA-stimulated HT-1080 human fibrosarcoma cells.
Fig. 2. Effect of crude extracts from C. soldanella on cell cytotoxicity (A), MMPs expression tested by gelatin zymography (B) and mRNA (C) and protein (D) expression in PMA- stimulated HT-1080 human fibrosarcoma cells.
Fig. 3. Effect of solvent-partitioned fractions from C. soldanella on cell cytotoxicity (A) and the production of MMP-2 (B) and MMP-9 (C) in PMA-stimulated HT-1080 human fibrosarcoma cells.
Fig. 4. Effect of solvent-partitioned fractions from C. soldanella on cell motility and invasion by wound migration assay (A) and gelatin zymography (B) in HT-1080 human fibrosarcoma cells.
Fig. 5. Effect of solvent-partitioned fractions from C. soldanella on MMPs expression in mRNA (A) and protein (B) levels in HT-1080 human fibrosarcoma cells.
Table 1. RT-PCR primer sequence
References
- Ahn, N. R., Ko, J. M. and Cha, H. C. 2012. Comparison of flavonoid profiles between leaves and stems of Calystegia soldanella and Calystegia japonica. Am. J. Plant Sci. 3, 1073-1076. https://doi.org/10.4236/ajps.2012.38128
- Brown, P. D., Bioxidge, R. E., Anderson, E. and Howll, A. 1993. Expression of activated gelatinase in human invasive breast carcinoma. Clin. Exp. Metastasis 11, 183-189. https://doi.org/10.1007/BF00114976
- Chambers, A. F. and Matrisian, L. M. 1997. Changing views of the role of matrix metalloproteinases in metastasis. J. Natl. Cancer Inst. 89, 1260-1270. https://doi.org/10.1093/jnci/89.17.1260
- Gentile, E. and Liuzzi, G. M. 2017. Marine pharmacology: therapeutic targeting of matrix metalloproteinases in neuroinflammation. Drug Discov. Today 22, 299-313. https://doi.org/10.1016/j.drudis.2016.09.023
- Gialeli, C., Theocharis, A. D. and Karamanos, N. K. 2011. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 278, 16-27. https://doi.org/10.1111/j.1742-4658.2010.07919.x
- John, A. and Tuszynski, G. 2001. The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol. Oncol. Res. 7, 14-23. https://doi.org/10.1007/BF03032599
- Kato, Y., Yamashita, T. and Ishikawa, M. 2002. Relationship between expression of matrix metalloproteinase-2 and matrix metalloproteinase-9 and invasion ability of cervical cancer cells. Oncol. Rep. 9, 565-569.
- Kim, E. K., Yun, S. J., Do, K. H., Kim, M. S., Cho, M., Suh, D. S., Kim, C. D., Kim, J. H., Birnbaum, M. J. and Bae, S. S. 2008. Lysophosphatidic acid induces cell migration through the selective activation of Akt1. Exp. Mol. Med. 40, 445-452. https://doi.org/10.3858/emm.2008.40.4.445
- Lee, J. I., Kim, I. H. and Nam, T. J. 2017. Crude extract and solvent fractions of Calystegia soldanella induce G1 and S phase arrest of the cell cycle in HepG2 cells. Int. J. Oncol. 50, 414-420. https://doi.org/10.3892/ijo.2017.3836
- Mook, O. R., Frederiks, W. M. and Van Noorden, C. J. 2004. The role of gelatinases in colorectal cancer progression and metastasis. Biochim. Biophys. Acta Rev. Cancer 1705, 69-89. https://doi.org/10.1016/j.bbcan.2004.09.006
- Pavlovic, S., Du, B., Sakamoto, K., Khan, K. M., Natarajan, C., Breyer, R. M., Dannenberg, A. J. and Falcone, D. J. 2006. Targeting prostaglandin E2 receptors as an alternative strategy to block cyclooxygenase-2-dependent extracellular matrix-induced matrix metalloproteinase-9 expression by macrophages. J. Biol. Chem. 281, 3321-3328. https://doi.org/10.1074/jbc.M506846200
- Pezzuto, J. M. 1997. Plant-derived anticancer agents. Biochem. Pharmacol. 53, 121-133. https://doi.org/10.1016/S0006-2952(96)00654-5
- Ramos-DeSimone, N., Hahn-Dantona, E., Sipley, J., Nagase, H., French, D. L. and Quigley, J. P. 1999. Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/ stromelysin-1 cascade enhances tumor cell invasion. J. Biol. Chem. 274, 13066-13076. https://doi.org/10.1074/jbc.274.19.13066
- Siegel, R. L., Miller, K. D. and Jemal, A. 2017. Cancer statistics 2017. CA Cancer J. Clin. 67, 7-30. https://doi.org/10.3322/caac.21387
- Soreide, K., Janssen, E. A., Korner, H. and Baak, J. P. 2006. Trypsin in colorectal cancer: molecular biological mechanisms of proliferation, invasion, and metastasis. J. Pathol. 209, 147-156. https://doi.org/10.1002/path.1999
- Spano, C., Bruno, M. and Bottega, S. 2013. Calystegia soldanella: dune versus laboratory plants to highlight key adaptive physiological trait. Acta Physiol. Plant. 35, 1329-1336 https://doi.org/10.1007/s11738-012-1173-x
- Stetler-Stevenson, W. G. 1990. Type IV collagenases in tumor invasion and metastasis. Cancer Metastasis Rev. 9, 289-303. https://doi.org/10.1007/BF00049520
- Tori, M., Ohara, Y., Nakashima, K. and Sono, M. 2000. Caffeic and courmaric acid esters from Calystegia soldanella. Fitoterapia 71, 353-359. https://doi.org/10.1016/S0367-326X(99)00174-4
- Vanmeter, T. E., Rooprai, H. K., Kibble, M. M., Fillmore, H. L., Broaddus, W. C. and Pilkington, G. J. 2001. The role of matrix metalloproteinase genes in glioma invasion: co-dependent and interactive proteolysis. J. Neurooncol. 53, 213-235. https://doi.org/10.1023/A:1012280925031
- Yang, Y. H. 2002. The relationship of symptoms of side effects, fatigue and quality of life in stomach cancer patients receiving chemotherapy. J. Korea Acad. Nurs. 14, 205-212.
- Zeng, Z. S., Cohen, A. M. and Guillem, J. G. 1999. Loss of basement membrane type IV collagen is associated with increased expression of metalloproteinases 2 and 9 (MMP-2 and MMP-9) during human colorectal tumorigenesis. Carcinogenesis 20, 749-755. https://doi.org/10.1093/carcin/20.5.749