DOI QR코드

DOI QR Code

순수형 보강토교대의 교대 형상에 따른 인발 안정성 검토

A Study on Pullout Stability according to Abutment Shape of True Mechanicaaly Stabilized Earth Wall Abutment

  • 신근식 (한국도로공사 남북도로협력처) ;
  • 한희수 (금오공과대학교 토목공학과)
  • Shin, Keun-Sik (Inter-Korean Highway Cooperation Agency, Korea Expressway Corporation) ;
  • Han, Heui-Soo (Department of Civil Engineering, Kumoh Institute of Technology)
  • 투고 : 2019.01.31
  • 심사 : 2019.03.08
  • 발행 : 2019.03.31

초록

순수형 보강토교대는 상부구조의 하중을 보강토체 상단에 직접기초 형식으로 지지하는 교대이다. 교대 자체의 변형을 최소화하기 위해 비신장성 보강재인 메탈스트립을 사용하여야 한다. 순수형 보강토교대의 적용조건 도출을 위한 매개변수해석은 Zevogolis(2007)에 의해 수행되었다. 그 결과, 최상단 보강재의 인발 안전율이 가장 작게 산정되는 것으로 나타났다. 따라서 최상단 보강재의 인발 안전율이 가장 중요한 설계인자로 판단된다. 본 연구에서는 교대의 형상에 따른 최상단 보강재의 인발 안전율 변화를 검토하였다. 교대 길이와 교대 뒷굽 길이, 교대 높이를 변수로 하여 매개변수해석을 수행하였다. 매개변수해석 결과, 교대 길이와 교대 뒷굽 길이가 증가함에 따라 인발 안전율이 증가하는 것으로 나타났다. 이는 교대 길이가 증가함에 따라 교대의 접지면적이 증가하게 되었으며, 그로 인해 상부구조의 하중이 분산되었기 때문이다. 교대 길이 1.2m에서와 교대 뒷굽 길이 0.9m 지점에서 인발 안전율이 수렴하는 것으로 나타났다. 이는 접지면적 증가에 따라 보강재의 유효길이가 감소하였기 때문이다. 그러나, 교대 길이와 교대 뒷굽 길이가 과도하게 증가될 경우 상부구조의 연장이 증가하게 된다. 그리고 교대 높이가 과도하게 증가할 경우 교대 뒤채움부 토공량이 증가하게 된다. 이는 보강토옹벽에 상부하중으로 작용하게 된다. 따라서 이에 대한 면밀한 검토가 필요하다고 판단된다.

A true MSEW abutment is an abutment type that directly supports the load of a superstructure. Metal strips, which are in-extensile reinforcements, should be used to minimize abutment deformation. A study to derive the application conditions of a True MSEW abutment was carried out by Zevogolis(2007). As a result, the pullout factor of safety of the uppermost reinforcement was estimated to be the smallest. Therefore, the pullout factor of safety of the uppermost reinforcement is the most important design factor. Parameter analysis was conducted with the abutment length, abutment heel, and abutment height as variables. The pullout factor of safety increased with increasing abutment length and abutment heel length. This is because the contact area increases and the superstructure is dispersed as the abutment length and abutment heel length increase. The pullout factor of safety converges at an abutment length of 1.2m and an abutment heel length of 0.9m. This is because the effective length of the reinforcement is reduced due to the increase in contact area. On the other hand, the extension of the superstructure will increase if the abutment length and abutment heel length are increased excessively. In addition, earth-volume is increased if the abutment height increases excessively. This acts as an upper load on the MSE wall. Therefore, it needs to be examined carefully.

키워드

SHGSCZ_2019_v20n3_594_f0001.png 이미지

Fig. 1. Type of MSEW abutment [10] (a) True type, (b) Mixed type

SHGSCZ_2019_v20n3_594_f0002.png 이미지

Fig. 2. Stress distribution of reinforced soil caused by load of super-structure [10] (a) Vertical earth pressure (b) Horizontal earth pressure

SHGSCZ_2019_v20n3_594_f0003.png 이미지

Fig. 3. Location of line of maximum tension on a MSEW abutment depending on seat geometry [10] (a) Case 1, (b) Case 2, (c) Case 3

SHGSCZ_2019_v20n3_594_f0004.png 이미지

Fig. 4. Active Earth Pressure coefficient according to type of reinforcement [5]

SHGSCZ_2019_v20n3_594_f0005.png 이미지

Fig. 6. Interpretation cross-section (a) Cross Section of True MSEW abutment[9] (b) Abutment Shape

SHGSCZ_2019_v20n3_594_f0006.png 이미지

Fig. 5. General map of Ture MSEW abutment [5] (a) Section of abutment (b) Section of Ture MSEW abutment

SHGSCZ_2019_v20n3_594_f0007.png 이미지

Fig. 7. Pullout safety by abutment seat length

SHGSCZ_2019_v20n3_594_f0008.png 이미지

Fig. 8. Pullout safety by abutment hill length

SHGSCZ_2019_v20n3_594_f0009.png 이미지

Fig. 9. Pullout safety by abutment Height length

Table 1. Parameter

SHGSCZ_2019_v20n3_594_t0001.png 이미지

Table 2. Soil properties

SHGSCZ_2019_v20n3_594_t0002.png 이미지

Table 3. Load properties [7]

SHGSCZ_2019_v20n3_594_t0003.png 이미지

Table 4. Allowable tensile strength for long loading

SHGSCZ_2019_v20n3_594_t0004.png 이미지

Table 5. Minimum factor of safety on MSEW

SHGSCZ_2019_v20n3_594_t0005.png 이미지

참고문헌

  1. A. J. Puppala, S. Saride, E. Archeewa, L. R. Hoyos, S. Mazarian, "Recommendation for Design Construction, and Maintenance of Bridge Approach Slabs : Synthesis Report", The University of Texas at Arlington, Texas, 2009.
  2. L. J. Briaud, R. W. James, S. B. Hoffman, "NCHRP Synthesis 234: Settlement of Bridge Approaches (the Bump at the End of the Bridge)", Transportation Research Board, National Research Council, Washington, DC, pp.75, 1997.
  3. Expressway & Transportation Research Institute, "Evaluation and Improvement of Ride Discomfort at Bridge Approaches in Service", Korea Expressway Corporation, 2012.
  4. Expressway & Transportation Research Institute, "Development of A New Concept Abutment", EXTRI-2016-47-534.9607, Korea Expressway Corporation, 2016.
  5. FHWA, "Mechanically Stabilized Earth Walls and Reinforced Soil Slopes, Design and Construction Guidelines", FHWA-NHI-00-043, Federal Highway Administration, U.S. Department of Transportation, Washington, DC, 2001.
  6. M. C. Park, "A Study on Stability and Economic feasibility according to Height on the MSE Wall with Pacing Panel", Journal of the Korea Academia-Industrial cooperation Society, Vol. 19, No. 5, pp. 54-63, 2018. DOI: http://doi.org/10.5762/KAIS.2018.19.5.54
  7. M. C. Park, "A Study on Applicability and External / Internal Stability of true MSEW abutment with slab", Journal of the Korea Academia-Industrial cooperation Society, Vol. 19, No. 5, pp. 263-274, 2018. DOI: http://doi.org/10.5762/KAIS.2018.19.5.54
  8. I. Zevogolis, P. Bourdeau, "Mechanically stabilized earth wall abutments for bridge support", Joint Transportation Research Program, Indiana, Indiana Department of Transportation and Purdue University, pp. 1-146, 2007. DOI: https://doi.org/10.5703/1288284313451
  9. T. S. Kim, S. Y. Lee, M. S. Nam, H. S. Han, "Pullout Behavior of Mechanically Stabilized Earth Wall Abutment by Steel Reinforcement and Backfill Properties", Journal of the Korea Academia-Industrial cooperation Society, Vol. 19, No. 11, pp. 750-757, 2018. DOI: https://doi.org/10.5762/KAIS.2018.19.11.750
  10. K. Brabant, "Mechanically Stabilized Earth walls for support of highway bridges", Advanced Foundation Engineering UMASS Lowell-Course(14.533), 2001.
  11. Korean Geotechnical Society, Structure foundation design standards specification, Ministry of Land, Transport and Maritime Affairs, 2015.
  12. MLTMA, "Road design manual", Ministry of Land, Transport and Maritime Affairs, 2008.