DOI QR코드

DOI QR Code

PVDF(Polyvinylidene Fluoride) 필름형 트랜스듀서 하이브리드 터널배수재에 대한 오염퇴적물 제거효율의 현장 적용성 평가

Assessment of Field Application of Contaminated Sediment Removal Efficiency Using PVDF Combined Hybrid Tunnel Drainage

  • 신진화 (명지대학교 토목환경공학과) ;
  • 문준호 (명지대학교 토목환경공학과) ;
  • 김영욱 (명지대학교 토목환경공학과)
  • Xin, Zhen-Hua (Department of Civil and Environmental Engineering, Myongji University) ;
  • Moon, Jun-Ho (Department of Civil and Environmental Engineering, Myongji University) ;
  • Kim, Young-Uk (Department of Civil and Environmental Engineering, Myongji University)
  • 투고 : 2018.11.28
  • 심사 : 2019.03.08
  • 발행 : 2019.03.31

초록

배수 시스템에서 오염퇴적물이 장기간 발생하게 되면 배수관 폐색현상을 일으켜 유지관리가 어렵고 배수관의 잔류수압이 커져 파손의 위험이 있다. 이에 본 연구에서는 PVDF 필름에 의해 발생하는 진동에너지를 활용하여 물리/화학적 폐색에 의한 터널배수 시스템 폐색을 감소시키는 시스템을 구축하였다. 또한, PVDF 필름을 기존 배수재와 융합한 하이브리드 배수재와 역압전 효과를 일으킬 수 있는 구동장치로 배수재 유지관리 시스템을 개발하였다. 터널 배수관 유지관리 성능을 고찰하기 위하여 실내조건에서 오염퇴적물을 모사하고 진동조건에서 폐색저감 효율을 관찰하였다. 그 결과 개발된 PVDF 필름 구동 장비로 20분 내외의 진동에너지를 발생하여 씻겨나간 오염퇴적물의 잔류면적을 측정한 결과 74.62%의 오염퇴적물 제거효과를 볼 수 있었다. 현장 적용성 평가를 위하여 PVDF 필름을 배수관에 부착하고 장기적으로 음압측정을 하여 실내실험으로부터의 측정 음압과 비교하여 현장실험의 대응율을 제시하였다. 현장실험은 터널 배수관으로부터 내부에 폐색이 주로 발생하는 구간인 종배수관과 횡배수관에 PVDF 필름을 부착하였고 터널현장 음압측정 실험으로부터 오염물퇴적 제거효율은 실내실험대비 현장 대응율은 90% 이상으로 확인됐다.

Typically, contaminated sediments cause clogging of the drain pipe, which increases the residual water pressure in the drain pipe; this study constructed a system for improving drainage efficiency of tunnels by reducing physical and chemical obstructions through ultrasonic energy generated by a PVDF film. The developed hybrid drainage system utilized a PVDF material film fused with an existing drainage tunnel and maintenance system resulting in the ability to initialize the reverse piezoelectric effect, which was evaluated through an on site application. In order to investigate the maintenance performance of the tunnel drainage system, contaminated sediments were simulated in a drainage pipe to test the effect of ultrasonic conditions on drainage efficiency in the laboratory. As a result of applying the developed portable equipment, the ultrasonic energy was generated for about 20 minutes resulting in a reduction of 74.62% of the contaminated sediments and improving drainage efficiency. From the tunnel, acoustic pressure measurements were taken to calculate the response rate while taking into account the laboratory results. In addition, PVDF film was attached to the transverse and longitudinal side of the drainage pipes where contaminated sediments occur most often in the field tunnel. these calculations show contaminant removal was 90% effective.

키워드

SHGSCZ_2019_v20n3_513_f0001.png 이미지

Fig. 1. Integrated PVDF transducer system

SHGSCZ_2019_v20n3_513_f0002.png 이미지

Fig. 2. Experiment Process

SHGSCZ_2019_v20n3_513_f0003.png 이미지

Fig. 3. Drainage maintenance system

SHGSCZ_2019_v20n3_513_f0004.png 이미지

Fig. 4. Contaminated sediments reduction tests (a) 1.5kHz sin signal mode (b) 1.5kHz sweep signal mode (c) 3kHz sin signal mode (d) 3kHz sweep signal mode (e) 4kHz sin signal mode (f) 4kHz sweep signal mode

SHGSCZ_2019_v20n3_513_f0005.png 이미지

Fig. 5. Measurement of tunnel acoustic pressure (a) Longitudinal drainage (b) Transverse drainage

SHGSCZ_2019_v20n3_513_f0006.png 이미지

Fig. 6. Acoustic pressure measurement test result of longitudinal drainage in laboratory

SHGSCZ_2019_v20n3_513_f0007.png 이미지

Fig. 7. Acoustic pressure measurement test result of transverse drainage in laboratory

SHGSCZ_2019_v20n3_513_f0008.png 이미지

Fig. 8. Acoustic pressure measurement test result of longitudinal drainage on site

SHGSCZ_2019_v20n3_513_f0009.png 이미지

Fig. 9. Acoustic pressure measurement test result of transverse drainage on site

Table 1. Components analysis of contaminated sediment components (Unit %) [9]

SHGSCZ_2019_v20n3_513_t0001.png 이미지

Table 2. Simulation contaminated sediment in laboratory

SHGSCZ_2019_v20n3_513_t0002.png 이미지

Table 3. Contaminated sediments reduction efficiency result

SHGSCZ_2019_v20n3_513_t0003.png 이미지

참고문헌

  1. I. Chu, S. H. Nam, S. I. Baek, H. S. Jung, B. S. Chun, "Bond Characteristics of Scale According to the Drainage Pipe's Material in Tunnel" Korean geotechnical society, Vol.12, No.11, pp. 51-57, 2011.
  2. T. Gamisch and G. Girmscheid . "Future Trends in Construction and Maintenance Management of Drainage Systems in Tunnels" Eidgenossische Technische Hochschule Zurich, Institut fur Bauplanungund Betrieb, pp. 2-5, 2005. DOI: https://dx.doi.org/10.3929/ethz-a-005950259
  3. F. Nyffeler, P. Ruch and C. Beck, "Limiting the Clogging of Filters through Ultrasonic Agitation and Tangential Flow Promotes Rapid Concentration of Suspended Matter in Large Samples of Water" Marine Geology, Vol.84, No.1-2, pp. 119-126, 1988. DOI: https://doi.org/10.1016/0025-3227(88)90130-2
  4. H. Li, X. Huai, J. Cai, S. Liang, "Experimental Research on Antiscale and Scale Removal by Ultrasonic Cavitation", Journal of Thermal Science, Vol.18, No.1, pp. 65-7, 2009. DOI: https://doi.org/10.1007/s11630-009-0065-x
  5. K. Higashitani, A. Kage, S. Katamura, K. Imai, S. Hatade, "Effects of a Magnetic Field on the Formation of $CaCO_{3}$ Particles", Journal of Colloid and Interface Science, Vol.156, No.1, pp. 90-95, 1993. https://doi.org/10.1006/jcis.1993.1085
  6. R. Gabrielli, R. Jaouhari, G. Maurin, M. Keddam, "Magnetic Water Treatment for Scale Prevention" Water Research, Vol.35, No.13, pp. 3249-3259, 2001. DOI: https://doi.org/10.1016/S0043-1354(01)00010-0
  7. C. S. Lee, J. Y. Kim, D. E. Lee, J. Joo, B. G. Wagh, S. Han, Y. W. Beag, S. K. Koh, "Flexible and Transparent Organic Film Speaker by Using Highly Conducting PEDOT/PSS as Eletrode." Synth. Met, Vol.139, No.2, pp. 457-61, 2003. DOI: https://doi.org/10.1016/S0379-6779(03)00199-1
  8. Z. H. Xin, J. H. Moon, Y. G. Song, Y. U. Kim, "Enhancing Maintenance Performance of Tunnel Drainage using Vibration from Polyvinylidene fluoride(PVDF) Film" Journal of the Korea Academia-Industrial, Vol.16, No.1, pp. 822-826, 2015. DOI: https://doi.org/10.1007/s12205-016-2689-1
  9. J. T. Woo, S. G. Yoo, "A Study on Analysis of Influx Path and Ingredient of Sedimentation Substance in Tunnel Drainage System" Korea Institute for Structural Maintenance and Inspection, Vol.8, No.10, pp. 145-152, 2004.
  10. G. Y. Im, G. M. Min, J. G. Oh, C. S. Yun, "Improvement of Existing Tunnel Drainage System", The Magazine of the Korean Society of Civil Engineering, Vol.61, No.11, pp.34-69, 2013.
  11. Z. H. Xin, J. H. Moon, Y. U. Kim, "Reduction of Adherent Forces of Sedimentous Contaminants in Tunnel Drainage using Vibrations from Flexible and Transparent Organic Films" KSCE Journal of Civil Engineering, Vol.22, No.7, pp. 2619-2622, 2018. DOI: https://doi.org/10.1007/s12205-017-0688-5
  12. L. E. Kinsler, A. R. Frey, A. B. Coppens, J. V. Sanders, "Fundamentals of Acoustics, Fourth Edition" New York: John Wiley & Sons, Inc., ISBN 978-0471847892, 1999.