DOI QR코드

DOI QR Code

Removal of Methylene blue from saline solutions by adsorption and electrodialysis

  • Lafi, Ridha (Laboratory of Water, Membranes and Biotechnologies, Water Researches and Technologies Center (CERTE)) ;
  • Mabrouk, Walid (Laboratory of Water, Membranes and Biotechnologies, Water Researches and Technologies Center (CERTE)) ;
  • Hafiane, Amor (Laboratory of Water, Membranes and Biotechnologies, Water Researches and Technologies Center (CERTE))
  • Received : 2018.01.04
  • Accepted : 2018.12.07
  • Published : 2019.03.25

Abstract

In this study, the removal of MB from saline solutions was evaluated by two methods by adsorption and electrodialysis; the adsorption of the mixture dye/salt on dried orange peel waste (OPW) was studied in batch method. In this study the biosorption of cationic dye by OPW was investigated as a function of initial solution pH, and initial salt (sodium chloride) concentration. The maximal dye uptake at $pH{\geq}3.6$ in the absence and in the presence of salt and the dye uptake diminished considerably in the presence of increasing concentrations of salt up to 8 g/L. The Redlich Peterson and Langmuir were the most suitable adsorption models for describing the biosorption equilibrium data of the dye both individually and in salt containing medium. As well, this work deals with the electrodialysis application to remove the dye. Synthetic solutions were used for the investigation of the main operational factors affecting the treatment performance; such as applied voltage, pH, initial dye concentration and ionic strength. The experimental results for adsorption and electrodialysis confirmed the importance of electrostatic interactions on the dye. The electrodialysis process with standard ion exchange membranes enabled efficient desalination of cationic dye solutions; there are two main factors in fouling: electrostatic interaction between cations of dyes and the fixed charged groups of the CEM, and affinity interactions.

Keywords

References

  1. Aksu, Z. and Balibek, E. (2010), "Effect of salinity on metalcomplex dye biosorption by rhizopus arrhizus", J. Environ. Manage., 91(7), 1546-1555. https://doi.org/10.1016/j.jenvman.2010.02.026
  2. Aksu, Z. and Balibek, E. (2007), "Chromium (VI) biosorption by dried Rhizopus arrhizus: Effect of salt (NaCl) concentration on equilibrium and kinetic parameters", J. Hazard. Mater., 145(1-2), 210-220. https://doi.org/10.1016/j.jhazmat.2006.11.011
  3. Ali, M.B.S., Ennigrou, D.J. and Hamrouni, B. (2013), "Iron removal from brackish water by electrodialysis", Environ. Technol., 34(17), 2521-2529. https://doi.org/10.1080/09593330.2013.777081
  4. Ali, M.B.S., Mnif, A., Hamrouni, B. and Dhahbi, M. (2010), "Electrodialytic desalination of brackish water: Effect of process parameters and water characteristics", Ion., 16(7), 621-629. https://doi.org/10.1007/s11581-010-0441-2
  5. Belkada, F.D., Kitous, O., Drouiche, N., Aoudj, S., Bouchelaghem, O., Abdi, N., Grib, H. and Mameri, N. (2018), "Electrodialysis for fluoride and nitrate removal from synthesized photovoltaic industry wastewater", Sep. Purif. Technol., 204, 108-115. https://doi.org/10.1016/j.seppur.2018.04.068
  6. Ben Douissa, N., Bergaoui, L., Mansouri, S., Khiari, R. and Mhenni, M.F. (2013), "Macroscopic and microscopic studies of methylene blue sorption onto extracted celluloses from Posidonia oceanica", Ind. Crop. Produ., 45, 106-113. https://doi.org/10.1016/j.indcrop.2012.12.007
  7. Chandramowleeswaran, M. and Palanivelu, K. (2006), "Treatability studies on textile effluent for total dissolved solids reduction using electrodialysis", Desalinat., 201(1-3), 164-174. https://doi.org/10.1016/j.desal.2005.10.042
  8. Chenna, M., Chemlal, R., Drouiche. N., Messaoudi, K. and Lounici, H. (2016), "Effectiveness of a physicochemical coagulation/flocculation process for the pretreatment of polluted water containing hydron blue dye", Des. Water Treat., 57(56), 27003-27014. https://doi.org/10.1080/19443994.2016.1165149
  9. Ciardelli, G., Corsi, L. and Marucci, M. (2000), "Membrane separation for wastewater reuse in the textile industry", Res. Conserv. Recycl., 31(2), 189-197. https://doi.org/10.1016/S0921-3449(00)00079-3
  10. Drouiche, N., Grib, H., Abdi, N., Lounici, H., Pauss, A. and Mameri, N. (2009), "Electrodialysis with bipolar membrane for regeneration of a spent activated carbon", J. Hazard. Mater., 170(1), 197-202. https://doi.org/10.1016/j.jhazmat.2009.04.115
  11. Fadel, A., Lafi, R., Aouni, A., Hafiane, A. and Nacef, S. (2016), "Separation of zinc ions from synthetically prepared brackish water using electrodialysis: Effect of operating parameters", Des. Water Treat., 57(38), 17852-17860. https://doi.org/10.1080/19443994.2015.1086692
  12. Farinella, N.V., Matos, G.D. and Arruda M.A.Z. (2007), "Grape bagasse as a potential biosorbent ofmetals in effluent treatment", Biores. Technol., 98(10), 1940-1946. https://doi.org/10.1016/j.biortech.2006.07.043
  13. Freundlich, H.M.F. (1906), "Over the adsorption in solution", J. Phys. Chem., 57, 385-470.
  14. Gnanasambandam R. and Protor, A. (2000), "Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy", Food Chem., 68(3), 327-332. https://doi.org/10.1016/S0308-8146(99)00191-0
  15. Guibaud, G., Tixier, N., Bouju, A. and Baudu, M. (2003), "Relationship between extracellular polymer's composition and its ability to complex Cd, Cu and Ni", Chemosph., 52(10), 1701-1710. https://doi.org/10.1016/S0045-6535(03)00355-2
  16. Hosseini, S., Khan, M.A., Malekbala, M.R., Cheah, W. and Choong, T.S.Y. (2011), "Carbon coated monolith, a mesoporous material for the removal of methyl orange from aqueous phase: Adsorption and desorption studies", Chem. Eng. J., 171(3), 1124-1131. https://doi.org/10.1016/j.cej.2011.05.010
  17. Hu, Y., Guo, T., Ye, X., Li, Q., Guo, M., Liu, H. and Wu, Z. (2013), "Dye adsorption by resins: Effect of ionic strength on hydrophobic and electrostatic interactions", Chem. Eng. J., 228, 392-397. https://doi.org/10.1016/j.cej.2013.04.116
  18. Iqbal, M., Saeed, A. and Zafar S.I. (2009), "FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of $Cd^{2+}$ and $Pb^{2+}$ removal by mango peel waste", J. Hazard. Mater., 164(1), 161-171. https://doi.org/10.1016/j.jhazmat.2008.07.141
  19. Irem, S., Khan, Q.M., Islam, E., Hashmat, A.J., Ul Haq, M.A., Afzal, M. and Mustafa, M.T. (2013), "Enhanced removal of reactive navy blue dye using powdered orange waste", Eco. Eng., 58, 399-405. https://doi.org/10.1016/j.ecoleng.2013.07.005
  20. Jingfeng, G., Qian, Z., Kai, S., Ranni, C. and Yongzhen, P. (2010), "Biosorption of acid yellow 17 from aqueous solution by nonliving aerobic granular sludge", J. Hazard. Mater., 174(1-3), 215-225. https://doi.org/10.1016/j.jhazmat.2009.09.039
  21. Kadirvelu, K. and Namasivayam, C. (2003), "Activated carbon from coconut coir pith as metal adsorbent: Adsorption of Cd (II) from aqueous solution", Adv. Environ. Res., 7(2), 471-478. https://doi.org/10.1016/S1093-0191(02)00018-7
  22. Langmuir, I. (1918), "The adsorption of gases on plane surfaces of glass, mica and platinum", J. Am. Chem. Soc., 40(9), 1361-1403. https://doi.org/10.1021/ja02242a004
  23. Li, F.T., Yang, H., Zhao, Y. and Xu, R. (2007), "Novel modified pectin for heavy metal adsorption", Chin. Chem. Lett., 18(3), 325-328. https://doi.org/10.1016/j.cclet.2007.01.034
  24. Li, Q., Yue, Q., Sun, H., Su, Y. and Gao, B. (2010), "A comparative study on the properties, mechanisms and process designs for the adsorption of non-ionic or anionic dyes onto cationic polymer/bentonite", J. Environ. Manage., 91(7), 1601-1611. https://doi.org/10.1016/j.jenvman.2010.03.001
  25. Liu, T., Li, Y., Du, Q., Sun, J., Jiao, Y., Yang, G., Wang, Z., Xia, Y., Zhang, W., Wang, K., Zhu, H. and Wu, D. (2012), "Adsorption of methylene blue from aqueous solution by graphene", Colloid. Surf. B, 90, 197-203. https://doi.org/10.1016/j.colsurfb.2011.10.019
  26. Majewska-Nowak, K.M. (2013), "Treatment of organic dye solutions by electrodialysis", Membr. Water Treat., 4(3), 203-214. https://doi.org/10.12989/MWT.2013.04.3.203
  27. Maurya, N.S., Mittal, A.K., Cornel, P. and Rother, E. (2006), "Biosorption of dyes using dead macro fungi: Effect of dye structure, ionic strength and pH", Biores. Technol., 97(3), 512-521. https://doi.org/10.1016/j.biortech.2005.02.045
  28. Nataraj, S.K., Sridhar, S., Shaikha, I.N., Reddy, D.S. and Aminabhavi, T.M. (2007), "Membrane-based microfiltration/electrodialysis hybrid process for the treatment of paper industry wastewater", Sep. Purif. Technol., 57(1), 185-192. https://doi.org/10.1016/j.seppur.2007.03.014
  29. Ncibi, M.C., Mahjoub, B. and Seffen, M. (2008), "Investigation of the sorption mechanisms of metal-complexed dye onto Posidonia oceanica (L.) fibres through kinetic modelling analysis", Biores. Technol., 99(13), 5582-5589. https://doi.org/10.1016/j.biortech.2007.10.040
  30. Newcombe, G. and Drikas, M. (1997), "Adsorption of NOM onto activated carbon: Electrostatic and non-electrostatic effects", Carbon., 35(9), 1239-1250. https://doi.org/10.1016/S0008-6223(97)00078-X
  31. Panswed, J. and Wongchaisuwan, S. (1986), "Mechanism of dye wastewater color removal by magnesium carbonate-hydrated basic", Water Sci. Technol., 18(3), 139-144. https://doi.org/10.2166/wst.1986.0045
  32. Pavan, F.A., Lima, E.C., Dias, S.L.P. and Mazzocato, A.C. (2008), "Methylene blue biosorption from aqueous solutions by yellow passion fruit waste", J. Hazard. Mater., 150(3), 703-712. https://doi.org/10.1016/j.jhazmat.2007.05.023
  33. Pelekani, C. and Snoeyink, V.L. (2000), "Competitive adsorption between atrazine and methylene blue on activated carbon: The importance of pore size distribution", Carb., 38(10), 1423-1436. https://doi.org/10.1016/S0008-6223(99)00261-4
  34. Redlich, O. and Peterson, D.L. (1959), "A useful adsorption isotherm", J. Phys. Chem., 63(6), 1024-1026. https://doi.org/10.1021/j150576a611
  35. Rehman, M.S.U., Kim, I. and Han, J. (2012), "Adsorption of methylene blue dye from aqueous solution by sugar extracted spent rice biomass", Carbohyd. Polym., 90(3), 1314-1322. https://doi.org/10.1016/j.carbpol.2012.06.078
  36. Saeeda, A., Sharif, M. and Iqbal, M. (2010), "Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption", J. Hazard. Mater., 179(1-3), 564-572. https://doi.org/10.1016/j.jhazmat.2010.03.041
  37. Temkin, M.J. and Pyzhev, V. (1940), "Recent modifications to langmuir isotherms", Acta Physiochim. USSR, 122, 17-222.
  38. Xu, T. (2005), "Ion exchange membranes: State of their development and perspective", J. Membr. Sci., 263(1-2), 1-29. https://doi.org/10.1016/j.memsci.2005.05.002
  39. Yaroslavtsev, A.B. and Nikonenko, V.V. (2009), "Ion-exchange membrane materials: Properties, modification, and practical application", Nanotechnol. Russ., 4(3-4), 137-159. https://doi.org/10.1134/S199507800903001X
  40. Zhou, Q., Gong, W., Xie, C., Yang, D., Ling, X., Yuan, X., Chen, S. and Liu, X. (2011), "Removal of neutral red from aqueous solution by adsorption on spent cottonseed hull substrate", J. Hazard. Mater., 185(1), 502-506. https://doi.org/10.1016/j.jhazmat.2010.09.029

Cited by

  1. Isotherm, kinetic and thermodynamic studies of dye removal from wastewater solution using leach waste materials vol.8, pp.1, 2019, https://doi.org/10.12989/aer.2019.8.1.023
  2. Removal of reactive black 5 dye by using polyoxometalate-membrane vol.12, pp.1, 2021, https://doi.org/10.12989/mwt.2021.12.1.023
  3. Biomass-Based Adsorbents for Removal of Dyes From Wastewater: A Review vol.9, 2021, https://doi.org/10.3389/fenvs.2021.764958