DOI QR코드

DOI QR Code

Modeling and Simulation for Predicting the Impact of Hydraulic Breaker

유압 브레이커의 충격량 예측을 위한 모델링과 해석

  • Kim, Sung-Hyun (Department of Reliability Assessment, Korea Institute of Machinery & Materials) ;
  • Chung, Jaeho (Department of Reliability Assessment, Korea Institute of Machinery & Materials) ;
  • Baek, Dong-Cheon (Department of Reliability Assessment, Korea Institute of Machinery & Materials) ;
  • Park, Jong-Won (Department of Reliability Assessment, Korea Institute of Machinery & Materials)
  • 김성현 (한국기계연구원 신뢰성 평가 연구실) ;
  • 정재호 (한국기계연구원 신뢰성 평가 연구실) ;
  • 백동천 (한국기계연구원 신뢰성 평가 연구실) ;
  • 박종원 (한국기계연구원 신뢰성 평가 연구실)
  • Received : 2018.12.13
  • Accepted : 2019.02.01
  • Published : 2019.02.28

Abstract

A hydraulic breaker attached to an excavator is a kind of constructuion equipment which is used for the disassembling of buildings, crashing road pavement, breaking rocks at quarry and etc. Therefore, the performance of the hydraulic breaker is mainly evaluated by the impact quantity and impact efficiency, which is an important factor for both the manufacturer and the user. In this paper, modeling and simulation for the prediction of the impact of the hydraulic breaker was conducted according to hydraulic pressure area and operating conditions of the hydraulic valve and piston using the commercial tools SimulationX for the 20ton hydraulic breaker which is mainly used in construction site. In order to verify the reliability of modeling and simulation, the results of previous experimental studies were compared and verified. The results of this study are expected to be useful for predicting the impact of the hydraulic breaker at the design stage before manufacturing and for studying parameters for improving the impact quantity. In addition, the manufacturer predicts that the development time and cost will be reduced through trial and error prevention by predicting the impact of the hydraulic breaker through the results of this paper.

굴삭기에 부착되는 유압 브레이커는 건물의 파괴 및 분해, 도로 포장재의 파손, 채석장에서의 암석 파단 등에 사용되고 있는 부착작업기의 일종의 건설 장비이다. 따라서 유압브레이커의 성능은 주로 충격량 및 충격 효율에 의해 평가되며, 이는 제조사 및 사용자 모두에게 중요한 요소이다. 본 논문에서는 건설 현장에서 주로 사용되는 20톤급 유압브레이커를 대상으로 상용 프로그램인 SimulationX를 사용하여 유압밸브 및 피스톤의 수압 면적 또는 작동 조건에 따라 유압 브레이커의 충격량 예측을 위한 모델링 및 해석을 진행하였다. 또한, 모델링 및 해석의 신뢰성을 확인하기 위하여 기존 실험 연구의 결과를 통하여 비교 및 검증하였다. 본 연구 결과는 제작 이전의 설계 단계에서 유압 브레이커의 충격량을 예측하고 충격량 향상을 위한 파라미터 연구에 도움이 될 것으로 본다. 또한 제조사 측에서는 본 논문의 결과를 통하여 유압 브레이커의 충격량을 미리 예측함으로서, 시행 착오 방지를 통하여 개발 시간 및 비용을 절감할 수 있을 것으로 예측한다.

Keywords

SHGSCZ_2019_v20n2_741_f0001.png 이미지

Fig. 1. Hydraulic breaker [2]

SHGSCZ_2019_v20n2_741_f0002.png 이미지

Fig. 2. Complete model of the hydraulic breaker

SHGSCZ_2019_v20n2_741_f0003.png 이미지

Fig. 3. Model of the valve

SHGSCZ_2019_v20n2_741_f0004.png 이미지

Fig. 4. Valve modeling: Hydraulic area

SHGSCZ_2019_v20n2_741_f0005.png 이미지

Fig. 5. Opening condition of Port1_in

SHGSCZ_2019_v20n2_741_f0006.png 이미지

Fig. 6. Opening condition of Port1_out

SHGSCZ_2019_v20n2_741_f0007.png 이미지

Fig. 7. Opening condition of Port2_out

SHGSCZ_2019_v20n2_741_f0008.png 이미지

Fig. 8. Opening condition of Port3_in

SHGSCZ_2019_v20n2_741_f0009.png 이미지

Fig. 9. Opening condition of Port3_out

SHGSCZ_2019_v20n2_741_f0010.png 이미지

Fig. 10. Opening condition of the valve

SHGSCZ_2019_v20n2_741_f0011.png 이미지

Fig. 11. Model of the piston

SHGSCZ_2019_v20n2_741_f0012.png 이미지

Fig. 12. Opening condition of Pport1

SHGSCZ_2019_v20n2_741_f0013.png 이미지

Fig. 13. Opening condition of Pport2_in

SHGSCZ_2019_v20n2_741_f0014.png 이미지

Fig. 14. Opening condition of Pport2_out

SHGSCZ_2019_v20n2_741_f0015.png 이미지

Fig. 15. Opening condition of Pport3_out

SHGSCZ_2019_v20n2_741_f0016.png 이미지

Fig. 16. Opening condition of the piston

SHGSCZ_2019_v20n2_741_f0017.png 이미지

Fig. 17. Loss energy of the hydraulic breaker versus time

SHGSCZ_2019_v20n2_741_f0018.png 이미지

Fig. 18. Velocity of the piston versus time

SHGSCZ_2019_v20n2_741_f0019.png 이미지

Fig. 19. Displacement of the piston versus time

SHGSCZ_2019_v20n2_741_f0020.png 이미지

Fig. 20. Impact force of the hydraulic breaker versus time

SHGSCZ_2019_v20n2_741_f0021.png 이미지

Fig. 21. Schematics of the experimental set-up

SHGSCZ_2019_v20n2_741_f0022.png 이미지

Fig. 22. Photo of the experimental set-up

Table. 1 Comparison of simulation results with experimental results

SHGSCZ_2019_v20n2_741_t0001.png 이미지

References

  1. S. H. Kim, M. S. Chang, J. W. Park, B. O. Choi, "A study on the degradation characteristic of a hydraulic breaker by the acclerated lift testing of vertical impact operation", Proc. of KSME Conference, pp. 174-175, 2013.
  2. G. H. Lee, Y. B. Lee, D. S. Jeong, "Development of the hydraulic pressure transducer system for testing the impact energy of hydraulic breaker", Journal of the Korean Society for Precision Engineering, vol.21, no.4, pp. 154-160, April, 2004.
  3. S. H. Ko, J. H. Lim, "Modeling and analysis of a hydraulic breaker considering elastic impact between the piston and chisel", Tran KSME, vol.19, no.2, pp. 338-347, 1995.
  4. Y. K. Lee, W. J. Sung, and C. S. Song, "The development of an analysis tool and the performance analysis of a hydraulic breaker system", Journal of the Korean Society for Precision Engineering, vol.17, no.4, pp. 189-196, 2000.
  5. Mounted breaker manufacturers bureau, Measuring Guide for Tool Energy Rating for Hydraulic Breakers, CIMA, 1996.
  6. G. Yang and Y. Chen, "The research of new type hydraulic breaker with strike energy and frequency of adjusted", Mechanical Engineering Research, vol.2, no.2, pp. 45-51, 2012. DOI: http://dx.doi.org/10.5539/mer.v2n2p45
  7. C. Song, D. J. Kim., J. Chung, K. W. Lee, S. S. Kweon and Y. K. Kang, "Estimation of impact loads in a hydraulic breaker by transfer path analysis", Shock and Vibration, pp. 1-15, 2017. DOI: https://doi.org/10.1155/2017/8564381
  8. A. Rey and Y. Cut'ko, "Anvilles hydraulic hammer with double-sided drive and increased lower ram mass", TEKA. Commission of Motorization and Energetics in Agriculture, vol.13, no.3, pp. 193-196, 2013.
  9. Y. Lee, W. Sung and C. Song, "The development of an analysis tool and the performance analysis of a hydraulic breaker system", Journal of the Korean Society for Precision Engineering, vol.17, no.4, pp. 189-196, 2000.
  10. J. W. Park and H. E. Kim, "Impact energy measurement of a hydraulic breaker", Key Engineering Materials, vol.326, pp1669-1672, 2006. DOI: https://doi.org/10.4028/www.scientific.net/KEM.326-328.1669
  11. KATS, 2009, Hydraulic Breaker for Construction Machinery-RS B 0022, Korean Agency for Technology and Standards.