Fig. 1. (a) Missing data imputation and (b) the proposed approach with pseudo data.
Table 1. Comparison of imputation methods
Table 2. Comparison of prediction models
Table 3. Test Error Comparison: Model 1
Table 4. Test Error Comparison: Model 2
Table 5. Test Error Comparison: Model 3
Table 6. Test Error Comparison: AR(1)
Table 7. Test Error Comparison: AR(2)
Table 8. Test Error Comparison: AR(3)
Table 9. Test Error Comparison: Model 1
Table 10. Test Error Comparison: Model 2
Table 11. Test Error Comparison: Model 3
Table 12. Results of the Test Error Comparison: CO2(ppm)
Table 13. Results of the Test Error Comparison: DJIA
References
- H. Akaike, "Information theory and an extension of the maximum likelihood principle," in Selected papers of hirotugu akaike, ed: Springer, pp. 199-213, 1998. DOI: https://doi.org/10.1007/978-1-4612-1694-0_15
- M. J. Garside, "The Best Subset in Multiple Regression Analysis," Applied Statistics, Vol. 14, pp. 196-200, 1965. DOI: https://doi.org/10.2307/2985341
- M. G. Kendall, A course in multivariate analysis, C, Griffin, London, pp. 23-29, 1957.
- H. Hotelling, "The relations of the newer multivariate statistical methods to factor analysis," British Journal of Statistical Psychology, Vol. 10, pp. 69-79, 1957. DOI: https://doi.org/10.1111/j.2044-8317.1957.tb00179.x
- A. E. Hoerl, and R. W. Kennard, "Ridge regression: Biased estimation for nonorthogonal problems," Technometrics, Vol. 12, No. 1, pp. 55-67, 1970. DOI: https://doi.org/10.2307/1271436
- R. Tibshirani, "Regression shrinkage and selection via the lasso," Journal of the Royal Statistical Society. Series B (Methodological), pp. 267-288, 1996. DOI: https://doi.org/10.2307/41262671
- S. Arlot, and A. Celisse, "A survey of cross-validation procedures for model selection," Statistics surveys, Vol. 4, pp. 40-79, 2010. DOI: https://doi.org/10.1214/09-SS054
- A. Cowling, and P. Hall, "On pseudo data methods for removing boundary effects in kernel density estimation," Journal of the Royal Statistical Society. Series B (Methodological), pp. 551-563, 1996. DOI: https://doi.org/10.2307/2345893
- D. B. H. Cline, and J. D. Hart, "Kernel estimation of densities with discontinuities or discontinuous derivatives," Statistics: A Journal of Theoretical and Applied Statistics, Vol. 22, No. 1, pp. 69-84, 1991. DOI: https://doi.org/10.1080/02331889108802286
- I. Gerlovina, Small Sample Inference, Doctoral dissertation, UC Berkeley, 2016. Available From: http://digitalassets.lib.berkeley.edu/etd/ucb/text/ Gerlovina_berkeley_0028E_16680.pdf
- J. El Methni, L. Gardes, & S. Girard, "Kernel estimation of extreme regression risk measures," Electronic journal of statistics, Vol. 12, No. 1, pp. 359-398, 2018. DOI: https://doi.org/10.1214/18-EJS1392
- M. Mudelsee, Extreme Value Time Series. In: Climate Time Series Analysis. Springer, pp. 217-267, 2014. DOI: https://doi.org/10.1007/978-90-481-9482-7
- L. Breiman, "Using convex pseudo-data to increase prediction accuracy," breast (Wis), Vol. 5, No. 2, pp. 1-18, 1998. Available From: https://statistics.berkeley.edu/sites/default/files/techreports/513.pdf https://doi.org/10.1016/S0960-9776(96)90041-7
- A. Purwar, and S. K. Singh, "Hybrid prediction model with missing value imputation for medical data," Expert Systems with Applications, Vol. 42, No. 13, pp. 5621-5631, 2015. DOI: https://doi.org/10.1016/j.eswa.2015.02.050
- Z. Liu, S. Sharma, and S. Datla, "Imputation of missing traffic data during holiday periods," Transportation Planning and Technology, Vol. 31, No. 5, pp. 525-544, 2008. DOI: https://doi.org/10.1080/03081060802364505
- S. F. Wu, C. Y. Chang, and Lee, S. J., "Time series forecasting with missing values," In Industrial Networks and Intelligent Systems (INISCom), 2015 1st International Conference on IEEE, pp. 151-156, 2015. DOI: https://doi.org/10.4108/icst.iniscom.2015.258269
- T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning, Springer, Berlin: Springer series in statistics, p. 38, 2009.
- D. Blend, & T. Marwala, Comparison of data imputation techniques and their impact, Available From: https://arxiv.org/ftp/arxiv/papers/0812/0812.1539.pdf
- D. Ruppert, and M. P. Wand, "Multivariate locally weighted least squares regression," The annals of statistics, pp. 1346-1370, 1994. DOI: https://doi.org/10.1214/aos/1176325632
- M. R., Pina-Monarrez, "A new theory in multiple linear regression," International Journal Of Industrial Engineering, Vol. 18, No. 6, pp. 310-316, 2011 Available From: https://www.researchgate.net/publication/279181297A_new_theory_in_multiple_linear_regression
- B. Al-hnaity, and M. Abbod, "Predicting Financial Time Series Data Using Hybrid Model," In Intelligent Systems and Applications. Springer International Publishing, pp. 19-41, 2017. DOI: https://doi.org/10.1007/978-3-319-33386-1_2