DOI QR코드

DOI QR Code

Fundamental Properties of Composite Board Made with Oriented Strand Board and Three Different Species of Veneer

  • Yanti, Hikma (Faculty of Forestry, Tanjungpura University) ;
  • Massijaya, Muh Yusram (Department of Forest Product, Faculty of Forestry, Bogor Agricultural University (IPB)) ;
  • Cahyono, Tekat Dwi (Faculty of Agriculture, University of Darussalam Ambon) ;
  • Novriyanti, Eka (Research Institute of Fiber Technology of Forest Plants, FORDA) ;
  • Iswanto, Apri Heri (Department of Forest Product, Faculty of Forestry, Universitas Sumatera Utara)
  • Received : 2018.12.20
  • Accepted : 2019.03.12
  • Published : 2019.03.25

Abstract

This research presents an improvement of the physical and mechanical properties of composite board (com-ply) made of Oriented Strand Board (OSB) coated with wood veneer of Pine (Pinus merkusii), Avocado (Persea Americana) and Mahogany (Swietenia mahogany). 1.5 mm thick veneers of those three wood types were adhered to the surface of OSB using two adhesive types: epoxy and isocyanate. The adhesive with the glue spread of $250g\;m^{-2}$ applied using single glue line was spread and then cold pressed with the pressure of $15kg\;cm^{-2}$ for 3 hours. The research result showed an improving dimension stability of com-ply, but not found on all parameters of physical property test. The moisture content seemed to be influenced by the com-ply type, yet not related to its thickness swelling, water absorption and linear expansion. The exception took place in the parallel linear expansion when immersed for 2 hours. The highest to the lowest increases of MOE and MOR were consecutively found on OSB coated with wood veneer of Pine, Mahogany and Avocado. However, the increases were statistically insignificant. The highest increasing screw hold power was found at the com-ply type AE (avocado veneer and epoxy adhesive) that was by 28%.

Keywords

HMJGBP_2019_v47n2_239_f0001.png 이미지

Fig. 1. Moisture Content and Density of all Com-ply Types.

HMJGBP_2019_v47n2_239_f0002.png 이미지

Fig. 2. Thickness swelling (TS) based on water ab-sorption (WA) changes.

HMJGBP_2019_v47n2_239_f0003.png 이미지

Fig. 4. MOE and MOR of all Com-ply types.

HMJGBP_2019_v47n2_239_f0004.png 이미지

Fig. 5. Screw Hold Power of all Com-ply types.

HMJGBP_2019_v47n2_239_f0005.png 이미지

Fig. 6. Internal Bonding of all Com-ply types.

HMJGBP_2019_v47n2_239_f0006.png 이미지

Fig. 3. Linear Expansion based on Water Absorption changes.

Table 1. Types of OSB Composite Plywood

HMJGBP_2019_v47n2_239_t0001.png 이미지

Table 2. Physical properties of Com-ply

HMJGBP_2019_v47n2_239_t0002.png 이미지

Table 3. Summary of ANOVA based on Com-ply's physical characteristics

HMJGBP_2019_v47n2_239_t0003.png 이미지

Table 4. Duncan Analysis on Density

HMJGBP_2019_v47n2_239_t0004.png 이미지

Table 5. Summary of ANOVA based on Mechanical Characteristics

HMJGBP_2019_v47n2_239_t0005.png 이미지

Table 6. Duncan Test based on Screw Hold Power

HMJGBP_2019_v47n2_239_t0006.png 이미지

References

  1. Biblis, E.J., Grigoriou, A., Carino, H. 1996. Flexural properties of veneer-overlaid OSB composite panels from southern yellow pine. Forest Products Journal 46(4): 59-62.
  2. Bowyer, J.L., Shmulsky, R., Haygreen, J.G. 2007. Forest products and wood science: an introduction. Wiley-Blackwell Publishing.
  3. Cahyono, T.D., Darmawan, W., Novriyanti, E. 2018. Performance of LVL samama (Anthocephalus macrophyllus) based on thickness, juvenile proportion and veneer lay-up. 2018 Conference Proceedings of The Korean Society of Wood Science & Technology 2018(1): 44-44.
  4. Cahyono, T.D., Darmawan, W., Novriyanti, E. 2018. Performance of samama (Anthocephalus macrophyllus) LVL based on veneer thickness, juvenile proportion and lay-up. Wood Material Science & Engineering: 1-8.
  5. Cahyono, T.D., Massijaya, M.Y., Iswanto, A.H., Yanti, H., Annisah, L.N. 2018. The flexural properties of medium density fibreboard overlaid with veneer from three species of wood. Humanosphere Science School 2017 & The 7th International Symposium for a Sustainable Humanosphere, Medan(ID).
  6. Cahyono, T.D., Novriyanti, E., Bahtiar, E.T., Massijaya, M.Y. 2014. Development of composite beams made from tali (Gigantochloa apus) and hitam bamboo (Gigantochloa atroviolacea). Journal of the Indian Academy of Wood Science 11(2): 156-161. https://doi.org/10.1007/s13196-014-0131-1
  7. Cahyono, T.D., Wahyudi, I., Priadi, T., Febrianto, F. 2017. Kualitas Kayu Lapis dari Finir Bagian Juvenil dan Dewasa Samama (Anthocephalus macrophyllus) (The Quality of Plywood Made from Juvenile and Mature Wood Veneer of Samama (Anthocephalus macrophyllus)). Jurnal Ilmu dan Teknologi Kayu Tropis (Journal of Tropical Wood Science and Technology) 15(2): 155-166.
  8. Cahyono, T.D., Wahyudi, I., Priadi, T., Febrianto, F., Bahtiar, E.T., Novriyanti, E. 2016. Analysis on Wood Quality, Geometry Factor, and Their Effects on Lathe Check of Samama (Anthocephalus macrophyllus) Veneer. Journal of the Korean Wood Science and Technology 44(2): 828-841. https://doi.org/10.5658/WOOD.2016.44.6.828
  9. Cahyono, T.D., Wahyudi, I., Priadi, T., Febrianto, F., Darmawan, W., Bahtiar, E.T., Ohorella, S., Novriyanti, E. 2015. The quality of 8 and 10 years old samama wood (Anthocephalus macrophyllus). Journal of the Indian Academy of Wood Science 12(1): 22-28. https://doi.org/10.1007/s13196-015-0140-8
  10. Cahyono, T.D., Yanti, H., Massijaya, M.Y., Iswanto, A.H., Uluputty, M.R. 2018. The durability of OSB Composite Plywood with Avocado, Mahogany and Pine Wood veneers against drywood and subterranean termites. International Conference on Agricultural, Environmental, and Food Security (AEFS), Medan(ID).
  11. CDMI 2015. Studi Potensi Bisnis dan Pelaku Utama Industri Plywood (Study on Business Potential and Major Players of Plywood Industry in Indonesia). CDMI (Creative Data Make Investigation and Reasearch) Consulting Group, Jakarta(ID).
  12. Celebi, G., Kilic, M. 2007. Nail and screw withdrawal strength of laminated veneer lumber made up hardwood and softwood layers. Construction and Building Materials 21(4): 894-900. https://doi.org/10.1016/j.conbuildmat.2005.12.015
  13. Cloutier, A., Ananias, R.A., Ballerini, A., Pecho, R. 2007. Effect of radiata pine juvenile wood on the physical and mechanical properties of oriented strandboard. Holz als Roh-und Werkstoff 65(2): 157-162. https://doi.org/10.1007/s00107-006-0148-2
  14. Cristescu, C. 2006. Bonding of laminated veneers with heat and pressure only. International Conference on Environmentally-Compatible Forest Products: 20/09/2006-22/09/2006, Fernando Pessoa University.
  15. Darmawan, W., Nandika, D., Massijaya, Y., Kabe, A., Rahayu, I., Denaud, L., Ozarska, B. 2015. Lathe check characteristics of fast growing sengon veneers and their effect on LVL glue-bond and bending strength. Journal of Materials Processing Technology 215: 181-188. https://doi.org/10.1016/j.jmatprotec.2014.08.015
  16. Febrianto, F., Hidayat, W., Bakar, E.S., Kwon, G.-J., Kwon, J.-H., Hong, S.-I., Kim, N.-H. 2012. Properties of oriented strand board made from Betung bamboo (Dendrocalamus asper (Schultes. f) Backer ex Heyne). Wood science and technology 46(1-3): 53-62. https://doi.org/10.1007/s00226-010-0385-8
  17. Gaspersz, V. 1991. Metode Perancangan Percobaan Untuk Ilmu-Ilmu Pertanian, Ilmu-Ilmu Teknik, dan Biologi. CV. Armico, Bandung, Indonesia.
  18. Ibrahim, M.A., Febrianto, F. 2013. Properties of oriented strand board (OSB) made from mixing bamboo. Thesis, Bogor Agricultural University, Bogor(ID).
  19. Iswanto, A., Febrianto, F., Wahyudi, I., Hwang, W.-J., Lee, S.-H., Kwon, J.-H., Kwon, S.-M., Kim, N.-H., Kondo, T. 2010. Effect of pre-treatment techniques on physical, mechanical and durability properties of oriendted strandboard made from sentang wood (Melia excelsa Jack). Journal of Faculty of Agriculture Kyushu University 55(2): 371-377. https://doi.org/10.5109/18854
  20. Iswanto, A.H., Aritonang, W., Azhar, I., Fatriasari, W. 2017. The physical, mechanical and durability properties of sorghum bagasse particleboard by layering surface treatment. Journal of the Indian Academy of Wood Science 14(1): 1-8. https://doi.org/10.1007/s13196-016-0181-7
  21. Iswanto, A.H., Simarmata, J., Fatriasari, W., Azhar, I., Sucipto, T., Hartono, R. 2017. Physical and Mechanical Properties of Three-layer Particleboards Bonded With UF and UMF Adhesives. Journal of the Korean Wood Science and Technology 45(6): 787-796. https://doi.org/10.5658/WOOD.2017.45.6.787
  22. Jang, J.-H., Lee, M., Kan, E.-C., Lee, S.-M. 2017. Characteristics of Low Density Fiberboards for Insulation Material with Different Adhesives (I) - Thermal Insulation Performance and Physical Properties -. Journal of the Korean Wood Science and Technology 45(3): 360-367. https://doi.org/10.5658/WOOD.2017.45.3.360
  23. JSA 2003. Japanese Industrial Standards (JIS) A 5908-2003: Particleboard. Japanese Standard Association (JSA), Tokyo(JP).
  24. Karlinasari, L., Nawawi, D., Widyani, M. 2010. Kajian Sifat Anatomi dan Kimia Kayu Kaitannya dengan Sifat Akustik Kayu. Bionatura 12(3): 110-116.
  25. Maloney, T.M. 1977. Modern particleboard and dry-process fiberboard manufacturing.
  26. Munoz, F., Moya, R. 2018. Effect of nanoclay-treated UF resin on the physical and mechanical properties of plywood manufactured with wood from tropical fast growth plantations. Maderas. Ciencia y tecnologia 20(1): 11-24.
  27. Nurhaida, N., Nugroho, N., Hermawan, D. 2008. Karakteristik Oriented Strand Board dari Kayu Akasia dan Afrika Berdasarkan Penyusunan Arah Strand. Jurnal Ilmu Pertanian Indonesia 13(1): 13-20.
  28. Nuryawan, A., Massijaya, M. 2005. Development on Exterior Composite Plywood (Com-Ply) Product Made of Meranti Veneer and Ekaliptus. Peronema Forestry Science Journal 1(2): 50-54.
  29. PDI 2016. Statistik Lingkungan Hidup dan Kehutanan Tahun 2016 (Environment and Forestry Statistic 2016). Pusat Data dan Informasi (PDI) (Data and Information Center). Ministry of Environment and Forestry of The Republic of Indonesia, Jakarta(ID).
  30. Rowell, R.M. 1998. The state of art and future development of bio-based composite science and technology towards the 21st century. Proceedings, 4th Pacific rim bio-based composite symposium.
  31. Rowell, R.M., Tillman, A.-M., Simonson, R. 1986. A simplified procedure for the acetylation of hardwood and softwood flaxes for flakeboard production. Journal of Wood Chemistry and Technology 6(3): 427-448. https://doi.org/10.1080/02773818608085236
  32. Santoso, A., Hadjib, N., Sutigno, P. 2000. Peningkatan mutu kayu melalui produk perekatan. Diskusi Peningkatan Kualitas Kayu. Pusat Penelitian Hasil Hutan Departemen Kehutanan dan Perkebunan, Bogor(ID).
  33. Soltis, A.L. 1999. Wood handbook: wood as an engineering material. General Technical Report FPL-GTR-113. US Department of Agriculture, Forest Service, Forest Products Laboratory, Madison (WI).
  34. Subiyanto, B., Rasyid, E., Gopar, M., Firmanti, A. 2008. Veneer and thin plywood overlaid for quality improvement of particleboard made of palm oil empty fruit bunches (EFB). Jurnal Ilmu dan Teknologi Kayu Tropis 6(1): 17-20.
  35. Sugiri, S., Alamsyah, E. M., Usman, A. P. 2016. Potential of Reinforced Indonesian Glulam Beams Using Grade I (Bengkirai), Grade II (Kamper), Grade III (Nyatoh) Woods for Use in Structural Wood Design. Journal of Engineering and Technological Sciences 48(2): 150-158. https://doi.org/10.5614/j.eng.technol.sci.2016.48.2.2
  36. Tsoumis, G. 1991. Science and technology of wood. Structure, properties, utilization. Van Nostrand Reinhold, New York, USA.
  37. Wu, Q., Suchsland, O. 1996. Linear expansion and its relationship to moisture content change for commercial oriented strandboards. Forest Products Journal 46(11/12): 79.