DOI QR코드

DOI QR Code

Vitamin D Improves Intestinal Barrier Function in Cirrhosis Rats by Upregulating Heme Oxygenase-1 Expression

  • Wang, Peng-fei (Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine) ;
  • Yao, Dan-hua (Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine) ;
  • Hu, Yue-yu (Department of Neurology, The Fourth Affiliated Hospital of Tongji University) ;
  • Li, Yousheng (Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine)
  • Received : 2018.03.21
  • Accepted : 2018.07.17
  • Published : 2019.03.01

Abstract

Intestinal barrier dysfunction always accompanies cirrhosis in patients with advanced liver disease and is an important contributor facilitating bacterial translocation (BT), which has been involved in the pathogenesis of cirrhosis and its complications. Several studies have demonstrated the protective effect of Vitamin D on intestinal barrier function. However, severe cholestasis leads to vitamin D depletion. This study was designed to test whether vitamin D therapy improves intestinal dysfunction in cirrhosis. Rats were subcutaneously injected with 50% sterile $CCl_4$ (a mixture of pure $CCl_4$ and olive oil, 0.3 mL/100 g) twice a week for 6 weeks. Next, $1,25(OH)_2D_3$ ($0.5{\mu}g/100g$) and the vehicle were administered simultaneously with $CCl_4$ to compare the extent of intestinal histologic damage, tight junction protein expression, intestinal barrier function, BT, intestinal proliferation, apoptosis, and enterocyte turnover. Intestinal heme oxygenase-1 (HO-1) expression and oxidative stress were also assessed. We found that vitamin D could maintain intestinal epithelial proliferation and turnover, inhibit intestinal epithelial apoptosis, alleviate structural damage, and prevent BT and intestinal barrier dysfunction. These were achieved partly through restoration of HO-1 and inhibition of oxidative stress. Taken together, our results suggest that vitamin D ameliorated intestinal epithelial turnover and improved the integrity and function of intestinal barrier in $CCl_4$-induced liver cirrhotic rats. HO-1 signaling activation was involved in these above beneficial effects.

Keywords

References

  1. Abramovitch, S., Sharvit, E., Weisman, Y., Bentov, A., Brazowski, E., Cohen, G., Volovelsky, O. and Reif, S. (2015) Vitamin D inhibits development of liver fibrosis in an animal model but cannot ameliorate established cirrhosis. Am. J. Physiol. Gastrointest. Liver Physiol. 308, G112-G120. https://doi.org/10.1152/ajpgi.00132.2013
  2. Alexopoulou, A., Agiasotelli, D., Vasilieva, L. E. and Dourakis, S. P. (2017) Bacterial translocation markers in liver cirrhosis. Ann. Gastroenterol. 30, 486-497.
  3. Barbalho, S. M., Goulart, R. A. and Gasparini, R. G. (2017) Associations between inflammatory bowel diseases and vitamin D. Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2017.1406333 [Epub ahead of print].
  4. Cai, Y., Wang, W., Liang, H., Sun, L., Teitelbaum, D. H. and Yang, H. (2013) Keratinocyte growth factor pretreatment prevents radiationinduced intestinal damage in a mouse model. Scand. J. Gastroenterol. 48, 419-426. https://doi.org/10.3109/00365521.2013.772227
  5. Chazouilleres, O. (2016) Novel aspects in the management of cholestatic liver diseases. Dig. Dis. 34, 340-346. https://doi.org/10.1159/000444544
  6. Chen, Y. X., Lai, L. N., Zhang, H. Y., Bi, Y. H., Meng, L., Li, X. J., Tian, X. X., Wang, L. M., Fan, Y. M., Zhao, Z. F., Han, D. W. and Ji, C. (2016) Effect of artesunate supplementation on bacterial translocation and dysbiosis of gut microbiota in rats with liver cirrhosis. World J. Gastroenterol. 22, 2949-2959. https://doi.org/10.3748/wjg.v22.i10.2949
  7. Firrincieli, D., Zuniga, S., Rey, C., Wendum, D., Lasnier, E., Rainteau, D., Braescu, T., Falguieres, T., Boissan, M., Cadoret, A., Housset, C. and Chignard, N. (2013) Vitamin D nuclear receptor deficiency promotes cholestatic liver injury by disruption of biliary epithelial cell junctions in mice. Hepatology 58, 1401-1412. https://doi.org/10.1002/hep.26453
  8. Fouts, D. E., Torralba, M., Nelson, K. E., Brenner, D. A. and Schnabl, B. (2012) Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease. J. Hepatol. 56, 1283-1292. https://doi.org/10.1016/j.jhep.2012.01.019
  9. Gupta, J. and Nebreda, A. (2014) Analysis of intestinal permeability in mice. Bio-protocol 4, e1289.
  10. Guttman, J. A. (2011) Using molecular tracers to assess the integrity of the intestinal epithelial barrier in vivo. Methods Mol. Biol. 762, 275-280. https://doi.org/10.1007/978-1-61779-185-7_19
  11. Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A. and Dulak, J. (2016) Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell. Mol. Life Sci. 73, 3221-3247. https://doi.org/10.1007/s00018-016-2223-0
  12. Luger, M., Kruschitz, R., Kienbacher, C., Traussnigg, S., Langer, F. B., Schindler, K., Wurger, T., Wrba, F., Trauner, M., Prager, G. and Ludvik, B. (2016) Prevalence of liver fibrosis and its association with non-invasive fibrosis and metabolic markers in morbidly obese patients with vitamin D deficiency. Obes. Surg. 26, 2425-2432. https://doi.org/10.1007/s11695-016-2123-2
  13. Nagpal, R. and Yadav, H. (2017) Bacterial translocation from the gut to the distant organs: an overview. Ann. Nutr. Metab. 71 Suppl 1, 11-16. https://doi.org/10.1159/000479918
  14. Neeman, R., Abramovitch, S., Sharvit, E., Elad-Sfadia, G., Haklai, R., Kloog, Y. and Reif, S. (2014) Vitamin D and S-farnesylthiosalicylic acid have a synergistic effect on hepatic stellate cells proliferation. Dig. Dis. Sci. 59, 2462-2469. https://doi.org/10.1007/s10620-014-3207-2
  15. Ozerkan, D., Ozsoy, N., Akbulut, K. G., Guney, S. and Ozturk, G. (2017) The protective effect of vitamin D against carbon tetrachloride damage to the rat liver. Biotech. Histochem. 92, 513-523. https://doi.org/10.1080/10520295.2017.1361549
  16. Piotrowski, D. and Boron-Kaczmarska, A. (2017) Bacterial infections and hepatic encephalopathy in liver cirrhosis-prophylaxis and treatment. Adv. Med. Sci. 62, 345-356. https://doi.org/10.1016/j.advms.2016.11.009
  17. Plourde, V., Gascon-Barre, M., Willems, B. and Huet, P. M. (1988) Severe cholestasis leads to vitamin D depletion without perturbing its C-25 hydroxylation in the dog. Hepatology 8, 1577-1585. https://doi.org/10.1002/hep.1840080618
  18. Rocha, S. W., de Franca, M. E., Rodrigues, G. B., Barbosa, K. P., Nunes, A. K., Pastor, A. F., Oliveira, A. G., Oliveira, W. H., Luna, R. L. and Peixoto, C. A. (2014) Diethylcarbamazine reduces chronic inflammation and fibrosis in carbon tetrachloride- (CCl(4)-) induced liver injury in mice. Mediators Inflamm. 2014, 696383.
  19. Shi, Y., Liu, T., Zhao, X., Yao, L., Hou, A., Fu, J. and Xue, X. (2018) Vitamin D ameliorates neonatal necrotizing enterocolitis via suppressing TLR4 in a murine model. Pediatr. Res. 83, 1024-1030. https://doi.org/10.1038/pr.2017.329
  20. Uc, A. and Britigan, B. E. (2003) Does heme oxygenase-1 have a role in Caco-2 cell cycle progression? Exp. Biol. Med. (Maywood) 228, 590-595. https://doi.org/10.1177/15353702-0322805-52
  21. Wang, P., Gong, G., Wei, Z. and Li, Y. (2010) Ethyl pyruvate prevents intestinal inflammatory response and oxidative stress in a rat model of extrahepatic cholestasis. J. Surg. Res. 160, 228-235. https://doi.org/10.1016/j.jss.2009.03.027
  22. Wiest, R., Lawson, M. and Geuking, M. (2014) Pathological bacterial translocation in liver cirrhosis. J. Hepatol. 60, 197-209. https://doi.org/10.1016/j.jhep.2013.07.044
  23. Zhang, L., Liu, Y. L., Chen, G. X., Cui, B., Wang, J. S., Shi, Y. L., Li, L. P. and Guo, X. B. (2013a) Heme oxygenase-1 promotes Caco-2 cell proliferation and migration by targeting CTNND1. Chin. Med. J. 126, 3057-3063.
  24. Zhang, Y. G., Wu, S. and Sun, J. (2013b) Vitamin D, vitamin D receptor, and tissue barriers. Tissue Barriers 1, e23118. https://doi.org/10.4161/tisb.23118

Cited by

  1. Regulation of the intestinal barrier by nutrients: The role of tight junctions vol.91, pp.1, 2019, https://doi.org/10.1111/asj.13357
  2. Pityriasis alba: Possible associations with intestinal helminths and pathogenic protozoa vol.74, pp.2, 2019, https://doi.org/10.1111/ijcp.13441
  3. Vitamin D signaling maintains intestinal innate immunity and gut microbiota: potential intervention for metabolic syndrome and NAFLD vol.318, pp.3, 2020, https://doi.org/10.1152/ajpgi.00286.2019
  4. Effects of Vitamin D-Deficient Diet on Intestinal Epithelial Integrity and Zonulin Expression in a C57BL/6 Mouse Model vol.8, 2021, https://doi.org/10.3389/fmed.2021.649818
  5. Food Processing, Dysbiosis, Gastrointestinal Inflammatory Diseases, and Antiangiogenic Functional Foods or Beverages vol.12, pp.1, 2019, https://doi.org/10.1146/annurev-food-062520-090235