References
- Brace, H., Latimer, M. and Winn, P. (1997) Neurotoxicity, blood-brain barrier breakdown, demyelination and remyelination associated with NMDA-induced lesions of the rat lateral hypothalamus. Brain Res. Bull. 43, 447-455. https://doi.org/10.1016/S0361-9230(97)00064-6
- Brambilla, A., Prudentino, A., Grippa, N. and Borsini, F. (1996) Pharmacological characterization of AMPA-induced biting behaviour in mice. Eur. J. Pharmacol. 305, 115-117. https://doi.org/10.1016/0014-2999(96)00145-8
- Cahusac, P. M., Evans, R. H., Hill, R. G., Rodriquez, R. E. and Smith, D. A. (1984) The behavioural effects of an N-methylaspartate receptor antagonist following application to the lumbar spinal cord of conscious rats. Neuropharmacology 23, 719-724. https://doi.org/10.1016/0028-3908(84)90102-3
- Cairns, B. E., Svensson, P., Wang, K., Hupfeld, S., Graven-Nielsen, T., Sessle, B. J., Berde, C. B. and Arendt-Nielsen, L. (2003) Activation of peripheral NMDA receptors contributes to human pain and rat afferent discharges evoked by injection of glutamate into the masseter muscle. J. Neurophysiol. 90, 2098-2105. https://doi.org/10.1152/jn.00353.2003
- Chung, K. C., Shin, S. W., Yoo, M., Lee, M. Y., Lee, H. W., Choe, B. K. and Ahn, Y. S. (2000) A systemic administration of NMDA induces immediate early gene pip92 in the hippocampus. J. Neurochem. 75, 9-17. https://doi.org/10.1046/j.1471-4159.2000.0750009.x
- Dickenson, A. H. and Aydar, E. (1991) Antagonism at the glycine site on the NMDA receptor reduces spinal nociception in the rat. Neurosci. Lett. 121, 263-266. https://doi.org/10.1016/0304-3940(91)90700-4
- Dickenson, A. H. and Sullivan, A. F. (1990) Differential effects of excitatory amino acid antagonists on dorsal horn nociceptive neurones in the rat. Brain Res. 506, 31-39. https://doi.org/10.1016/0006-8993(90)91195-M
- Gao, R. and Penzes, P. (2015) Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders. Curr. Mol. Med. 15, 146-167. https://doi.org/10.2174/1566524015666150303003028
- Gimenez-Llort, L., Ferre, S. and Martinez, E. (1995) Effects of the systemic administration of kainic acid and NMDA on exploratory activity in rats. Pharmacol. Biochem. Behav. 51, 205-210. https://doi.org/10.1016/0091-3057(94)00420-N
- Hylden, J. L. and Wilcox, G. L. (1981) Intrathecal substance P elicits a caudally-directed biting and scratching behavior in mice. Brain Res. 217, 212-215. https://doi.org/10.1016/0006-8993(81)90203-1
- Hylden, J. L. and Wilcox, G. L. (1983) Pharmacological characterization of substance P-induced nociception in mice: modulation by opioid and noradrenergic agonists at the spinal level. J. Pharmacol. Exp. Ther. 226, 398-404.
- Javitt, D. C., Zukin, S. R., Heresco-Levy, U. and Umbricht, D. (2012) Has an angel shown the way? Etiological and therapeutic implications of the PCP/NMDA model of schizophrenia. Schizophr. Bull. 38, 958-966. https://doi.org/10.1093/schbul/sbs069
- Jinks, S. L. and Carstens, E. (1998) Spinal NMDA receptor involvement in expansion of dorsal horn neuronal receptive field area produced by intracutaneous histamine. J. Neurophysiol. 79, 1613-1618. https://doi.org/10.1152/jn.1998.79.4.1613
- Kabova, R., Liptakova, S., Slamberova, R., Pometlova, M. and Velisek, L. (1999) Age-specific N-methyl-D-aspartate-induced seizures: perspectives for the West syndrome model. Epilepsia 40, 1357-1369. https://doi.org/10.1111/j.1528-1157.1999.tb02006.x
- Kehrer, C., Maziashvili, N., Dugladze, T. and Gloveli, T. (2008) Altered excitatory-inhibitory balance in the nmda-hypofunction model of schizophrenia. Front. Mol. Neurosci. 1, 6. https://doi.org/10.3389/neuro.02.006.2008
- Kim, H., Lim, C. S. and Kaang, B. K. (2016) Neuronal mechanisms and circuits underlying repetitive behaviors in mouse models of autism spectrum disorder. Behav. Brain Funct. 12, 3. https://doi.org/10.1186/s12993-016-0087-y
- Kim, J. W., Park, K., Kang, R. J., Gonzales, E. L. T., Kim, D. G., Oh, H. A., Seung, H., Ko, M. J., Kwon, K. J., Kim, K. C., Lee, S. H., Chung, C. and Shin, C. Y. (2019) Pharmacological modulation of AMPA receptor rescues social impairments in animal models of autism. Neuropsychopharmacology 44, 314-323. https://doi.org/10.1038/s41386-018-0098-5
- Kim, J. W., Seung, H., Kim, K. C., Gonzales, E. L., Oh, H. A., Yang, S. M., Ko, M. J., Han, S. H., Banerjee, S. and Shin, C. Y. (2017) Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism. Neuropharmacology 113, 71-81. https://doi.org/10.1016/j.neuropharm.2016.09.014
- Kim, K. C., Lee, D. K., Go, H. S., Kim, P., Choi, C. S., Kim, J. W., Jeon, S. J., Song, M. R. and Shin, C. Y. (2014) Pax6-dependent cortical glutamatergic neuronal differentiation regulates autism-like behavior in prenatally valproic acid-exposed rat offspring. Mol. Neurobiol. 49, 512-528. https://doi.org/10.1007/s12035-013-8535-2
- Kristensen, J. D., Karlsten, R., Gordh, T. and Berge, O. G. (1994) The NMDA antagonist 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) has antinociceptive effect after intrathecal injection in the rat. Pain 56, 59-67. https://doi.org/10.1016/0304-3959(94)90150-3
- Lee, E. J., Choi, S. Y. and Kim, E. (2015) NMDA receptor dysfunction in autism spectrum disorders. Curr. Opin. Pharmacol. 20, 8-13. https://doi.org/10.1016/j.coph.2014.10.007
- McRoberts, J. A., Coutinho, S. V., Marvizon, J. C., Grady, E. F., Tognetto, M., Sengupta, J. N., Ennes, H. S., Chaban, V. V., Amadesi, S., Creminon, C., Lanthorn, T., Geppetti, P., Bunnett, N. W. and Mayer, E. A. (2001) Role of peripheral N-methyl-D-aspartate (NMDA) receptors in visceral nociception in rats. Gastroenterology 120, 1737-1748. https://doi.org/10.1053/gast.2001.24848
- Mjellem, N., Lund, A. and Hole, K. (1993) Different functions of spinal 5-HT1A and 5-HT2 receptor subtypes in modulating behaviour induced by excitatory amino acid receptor agonists in mice. Brain Res. 626, 78-82. https://doi.org/10.1016/0006-8993(93)90565-5
- Moy, S. S., Nonneman, R. J., Shafer, G. O., Nikolova, V. D., Riddick, N. V., Agster, K. L., Baker, L. K. and Knapp, D. J. (2013) Disruption of social approach by MK-801, amphetamine, and fluoxetine in adolescent C57BL/6J mice. Neurotoxicol. Teratol. 36, 36-46. https://doi.org/10.1016/j.ntt.2012.07.007
- Murray, C. W., Cowan, A. and Larson, A. A. (1991) Neurokinin and NMDA antagonists (but not a kainic acid antagonist) are antinociceptive in the mouse formalin model. Pain 44, 179-185. https://doi.org/10.1016/0304-3959(91)90135-K
- Nelson, S. B. and Valakh, V. (2015) Excitatory/Inhibitory Balance and Circuit Homeostasis in Autism Spectrum Disorders. Neuron 87, 684-698. https://doi.org/10.1016/j.neuron.2015.07.033
- Nozari, M., Shabani, M., Hadadi, M. and Atapour, N. (2014) Enriched environment prevents cognitive and motor deficits associated with postnatal MK-801 treatment. Psychopharmacology 231, 4361-4370. https://doi.org/10.1007/s00213-014-3580-8
- Ogren, S. O. and Berge, O. G. (1984) Test-dependent variations in the antinociceptive effect of p-chloroamphetamine-induced release of 5-hydroxytryptamine. Neuropharmacology 23, 915-924. https://doi.org/10.1016/0028-3908(84)90005-4
- Raigorodsky, G. and Urca, G. (1990) Spinal antinociceptive effects of excitatory amino acid antagonists: quisqualate modulates the action of N-methyl-D-aspartate. Eur. J. Pharmacol. 182, 37-47. https://doi.org/10.1016/0014-2999(90)90491-N
- Rung, J. P., Carlsson, A., RydenMarkinhuhta, K. and Carlsson, M. L. (2005) (+)-MK-801 induced social withdrawal in rats; a model for negative symptoms of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 827-832. https://doi.org/10.1016/j.pnpbp.2005.03.004
- Sakurada, T., Manome, Y., Katsumata, K., Tan-No, K., Sakurada, S., Ohba, M. and Kisara, K. (1994a) Comparison of antagonistic effects of sendide and CP-96,345 on a spinally mediated behavioural response in mice. Eur. J. Pharmacol. 261, 85-90. https://doi.org/10.1016/0014-2999(94)90304-2
- Sakurada, T., Manome, Y., Tan-No, K., Sakurada, S. and Kisara, K. (1990) The effects of substance P analogues on the scratching, biting and licking response induced by intrathecal injection of N-methyl-D-aspartate in mice. Br. J. Pharmacol. 101, 307-310. https://doi.org/10.1111/j.1476-5381.1990.tb12706.x
- Sakurada, T., Yamada, T., Sakurada, S., Kisara, K. and Ohba, M. (1989) Substance P analogues containing D-histidine antagonize the behavioural effects of intrathecally co-administered substance P in mice. Eur. J. Pharmacol. 174, 153-160. https://doi.org/10.1016/0014-2999(89)90307-5
- Sakurada, T., Yogo, H., Manome, Y., Tan-No, K., Sakurada, S., Yamada, A., Kisara, K. and Ohba, M. (1994b) Pharmacological characterisation of NK1 receptor antagonist, [D-Trp7]sendide, on behaviour elicited by substance P in the mouse. Naunyn Schmiedebergs Arch. Pharmacol. 350, 387-392.
- Schoepp, D. D., Gamble, A. Y., Salhoff, C. R., Johnson, B. G. and Ornstein, P. L. (1990) Excitatory amino acid-induced convulsions in neonatal rats mediated by distinct receptor subtypes. Eur. J. Pharmacol. 182, 421-427. https://doi.org/10.1016/0014-2999(90)90039-9
- Svoboda, J., Stankova, A., Entlerova, M. and Stuchlik, A. (2015) Acute administration of MK-801 in an animal model of psychosis in rats interferes with cognitively demanding forms of behavioral flexibility on a rotating arena. Front. Behav. Neurosci. 9, 75. https://doi.org/10.3389/fnbeh.2015.00075
- Tan-No, K., Taira, A., Wako, K., Niijima, F., Nakagawasai, O., Tadano, T., Sakurada, C., Sakurada, T. and Kisara, K. (2000) Intrathecally administered spermine produces the scratching, biting and licking behaviour in mice. Pain 86, 55-61. https://doi.org/10.1016/S0304-3959(99)00312-7
- Tjolsen, A., Rosland, J. H., Berge, O. G. and Hole, K. (1991) The increasing-temperature hot-plate test: an improved test of nociception in mice and rats. J. Pharmacol. Toxicol. Methods 25, 241-250.
- Urca, G. and Raigorodsky, G. (1988) Behavioral classification of excitatory amino acid receptors in mouse spinal cord. Eur. J. Pharmacol. 153, 211-220. https://doi.org/10.1016/0014-2999(88)90608-5
- Uzunova, G., Pallanti, S. and Hollander, E. (2016) Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics. World J. Biol. Psychiatry 17, 174-186. https://doi.org/10.3109/15622975.2015.1085597
- van der Staay, F. J., Rutten, K., Erb, C. and Blokland, A. (2011) Effects of the cognition impairer MK-801 on learning and memory in mice and rats. Behav. Brain Res. 220, 215-229. https://doi.org/10.1016/j.bbr.2011.01.052
- Won, H., Lee, H. R., Gee, H. Y., Mah, W., Kim, J. I., Lee, J., Ha, S., Chung, C., Jung, E. S., Cho, Y. S., Park, S. G., Lee, J. S., Lee, K., Kim, D., Bae, Y. C., Kaang, B. K., Lee, M. G. and Kim, E. (2012) Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature 486, 261-265. https://doi.org/10.1038/nature11208
- Wu, H., Wang, X., Gao, Y., Lin, F., Song, T., Zou, Y., Xu, L. and Lei, H. (2016) NMDA receptor antagonism by repetitive MK801 administration induces schizophrenia-like structural changes in the rat brain as revealed by voxel-based morphometry and diffusion tensor imaging. Neuroscience 322, 221-233. https://doi.org/10.1016/j.neuroscience.2016.02.043
- Yamamoto, T. and Yaksh, T. L. (1992) Comparison of the antinociceptive effects of pre- and posttreatment with intrathecal morphine and MK801, an NMDA antagonist, on the formalin test in the rat. Anesthesiology 77, 757-763. https://doi.org/10.1097/00000542-199210000-00021
Cited by
- Modelling and treating GRIN2A developmental and epileptic encephalopathy in mice vol.143, pp.7, 2019, https://doi.org/10.1093/brain/awaa147