DOI QR코드

DOI QR Code

Effects of Intraperitoneal N-methyl-D-aspartate (NMDA) Administration on Nociceptive/Repetitive Behaviors in Juvenile Mice

  • Kim, Seonmin (Department of Neuroscience, School of Medicine, Konkuk University) ;
  • Kim, Do Gyeong (Department of Neuroscience, School of Medicine, Konkuk University) ;
  • Gonzales, Edson luck (Department of Neuroscience, School of Medicine, Konkuk University) ;
  • Mabunga, Darine Froy N. (Department of Neuroscience, School of Medicine, Konkuk University) ;
  • Shin, Dongpil (Department of Neuroscience, School of Medicine, Konkuk University) ;
  • Jeon, Se Jin (Department of Neuroscience, School of Medicine, Konkuk University) ;
  • Shin, Chan Young (Department of Neuroscience, School of Medicine, Konkuk University) ;
  • Ahn, TaeJin (Life Science, Handong Global University) ;
  • Kwon, Kyoung Ja (Department of Neuroscience, School of Medicine, Konkuk University)
  • Received : 2018.12.05
  • Accepted : 2018.12.17
  • Published : 2019.03.01

Abstract

Dysregulation of excitatory neurotransmission has been implicated in the pathogenesis of neuropsychiatric disorders. Pharmacological inhibition of N-methyl-D-aspartate (NMDA) receptors is widely used to model neurobehavioral pathologies and underlying mechanisms. There is ample evidence that overstimulation of NMDA-dependent neurotransmission may induce neurobehavioral abnormalities, such as repetitive behaviors and hypersensitization to nociception and cognitive disruption, pharmacological modeling using NMDA has been limited due to the induction of neurotoxicity and blood brain barrier breakdown, especially in young animals. In this study, we examined the effects of intraperitoneal NMDA-administration on nociceptive and repetitive behaviors in ICR mice. Intraperitoneal injection of NMDA induced repetitive grooming and tail biting/licking behaviors in a dose- and age-dependent manner. Nociceptive and repetitive behaviors were more prominent in juvenile mice than adult mice. We did not observe extensive blood brain barrier breakdown or neuronal cell death after peritoneal injection of NMDA, indicating limited neurotoxic effects despite a significant increase in NMDA concentration in the cerebrospinal fluid. These findings suggest that the observed behavioral changes were not mediated by general NMDA toxicity. In the hot plate test, we found that the latency of paw licking and jumping decreased in the NMDA-exposed mice especially in the 75 mg/kg group, suggesting increased nociceptive sensitivity in NMDA-treated animals. Repetitive behaviors and increased pain sensitivity are often comorbid in psychiatric disorders (e.g., autism spectrum disorder). Therefore, the behavioral characteristics of intraperitoneal NMDA-administered mice described herein may be valuable for studying the mechanisms underlying relevant disorders and screening candidate therapeutic molecules.

Keywords

References

  1. Brace, H., Latimer, M. and Winn, P. (1997) Neurotoxicity, blood-brain barrier breakdown, demyelination and remyelination associated with NMDA-induced lesions of the rat lateral hypothalamus. Brain Res. Bull. 43, 447-455. https://doi.org/10.1016/S0361-9230(97)00064-6
  2. Brambilla, A., Prudentino, A., Grippa, N. and Borsini, F. (1996) Pharmacological characterization of AMPA-induced biting behaviour in mice. Eur. J. Pharmacol. 305, 115-117. https://doi.org/10.1016/0014-2999(96)00145-8
  3. Cahusac, P. M., Evans, R. H., Hill, R. G., Rodriquez, R. E. and Smith, D. A. (1984) The behavioural effects of an N-methylaspartate receptor antagonist following application to the lumbar spinal cord of conscious rats. Neuropharmacology 23, 719-724. https://doi.org/10.1016/0028-3908(84)90102-3
  4. Cairns, B. E., Svensson, P., Wang, K., Hupfeld, S., Graven-Nielsen, T., Sessle, B. J., Berde, C. B. and Arendt-Nielsen, L. (2003) Activation of peripheral NMDA receptors contributes to human pain and rat afferent discharges evoked by injection of glutamate into the masseter muscle. J. Neurophysiol. 90, 2098-2105. https://doi.org/10.1152/jn.00353.2003
  5. Chung, K. C., Shin, S. W., Yoo, M., Lee, M. Y., Lee, H. W., Choe, B. K. and Ahn, Y. S. (2000) A systemic administration of NMDA induces immediate early gene pip92 in the hippocampus. J. Neurochem. 75, 9-17. https://doi.org/10.1046/j.1471-4159.2000.0750009.x
  6. Dickenson, A. H. and Aydar, E. (1991) Antagonism at the glycine site on the NMDA receptor reduces spinal nociception in the rat. Neurosci. Lett. 121, 263-266. https://doi.org/10.1016/0304-3940(91)90700-4
  7. Dickenson, A. H. and Sullivan, A. F. (1990) Differential effects of excitatory amino acid antagonists on dorsal horn nociceptive neurones in the rat. Brain Res. 506, 31-39. https://doi.org/10.1016/0006-8993(90)91195-M
  8. Gao, R. and Penzes, P. (2015) Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders. Curr. Mol. Med. 15, 146-167. https://doi.org/10.2174/1566524015666150303003028
  9. Gimenez-Llort, L., Ferre, S. and Martinez, E. (1995) Effects of the systemic administration of kainic acid and NMDA on exploratory activity in rats. Pharmacol. Biochem. Behav. 51, 205-210. https://doi.org/10.1016/0091-3057(94)00420-N
  10. Hylden, J. L. and Wilcox, G. L. (1981) Intrathecal substance P elicits a caudally-directed biting and scratching behavior in mice. Brain Res. 217, 212-215. https://doi.org/10.1016/0006-8993(81)90203-1
  11. Hylden, J. L. and Wilcox, G. L. (1983) Pharmacological characterization of substance P-induced nociception in mice: modulation by opioid and noradrenergic agonists at the spinal level. J. Pharmacol. Exp. Ther. 226, 398-404.
  12. Javitt, D. C., Zukin, S. R., Heresco-Levy, U. and Umbricht, D. (2012) Has an angel shown the way? Etiological and therapeutic implications of the PCP/NMDA model of schizophrenia. Schizophr. Bull. 38, 958-966. https://doi.org/10.1093/schbul/sbs069
  13. Jinks, S. L. and Carstens, E. (1998) Spinal NMDA receptor involvement in expansion of dorsal horn neuronal receptive field area produced by intracutaneous histamine. J. Neurophysiol. 79, 1613-1618. https://doi.org/10.1152/jn.1998.79.4.1613
  14. Kabova, R., Liptakova, S., Slamberova, R., Pometlova, M. and Velisek, L. (1999) Age-specific N-methyl-D-aspartate-induced seizures: perspectives for the West syndrome model. Epilepsia 40, 1357-1369. https://doi.org/10.1111/j.1528-1157.1999.tb02006.x
  15. Kehrer, C., Maziashvili, N., Dugladze, T. and Gloveli, T. (2008) Altered excitatory-inhibitory balance in the nmda-hypofunction model of schizophrenia. Front. Mol. Neurosci. 1, 6. https://doi.org/10.3389/neuro.02.006.2008
  16. Kim, H., Lim, C. S. and Kaang, B. K. (2016) Neuronal mechanisms and circuits underlying repetitive behaviors in mouse models of autism spectrum disorder. Behav. Brain Funct. 12, 3. https://doi.org/10.1186/s12993-016-0087-y
  17. Kim, J. W., Park, K., Kang, R. J., Gonzales, E. L. T., Kim, D. G., Oh, H. A., Seung, H., Ko, M. J., Kwon, K. J., Kim, K. C., Lee, S. H., Chung, C. and Shin, C. Y. (2019) Pharmacological modulation of AMPA receptor rescues social impairments in animal models of autism. Neuropsychopharmacology 44, 314-323. https://doi.org/10.1038/s41386-018-0098-5
  18. Kim, J. W., Seung, H., Kim, K. C., Gonzales, E. L., Oh, H. A., Yang, S. M., Ko, M. J., Han, S. H., Banerjee, S. and Shin, C. Y. (2017) Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism. Neuropharmacology 113, 71-81. https://doi.org/10.1016/j.neuropharm.2016.09.014
  19. Kim, K. C., Lee, D. K., Go, H. S., Kim, P., Choi, C. S., Kim, J. W., Jeon, S. J., Song, M. R. and Shin, C. Y. (2014) Pax6-dependent cortical glutamatergic neuronal differentiation regulates autism-like behavior in prenatally valproic acid-exposed rat offspring. Mol. Neurobiol. 49, 512-528. https://doi.org/10.1007/s12035-013-8535-2
  20. Kristensen, J. D., Karlsten, R., Gordh, T. and Berge, O. G. (1994) The NMDA antagonist 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) has antinociceptive effect after intrathecal injection in the rat. Pain 56, 59-67. https://doi.org/10.1016/0304-3959(94)90150-3
  21. Lee, E. J., Choi, S. Y. and Kim, E. (2015) NMDA receptor dysfunction in autism spectrum disorders. Curr. Opin. Pharmacol. 20, 8-13. https://doi.org/10.1016/j.coph.2014.10.007
  22. McRoberts, J. A., Coutinho, S. V., Marvizon, J. C., Grady, E. F., Tognetto, M., Sengupta, J. N., Ennes, H. S., Chaban, V. V., Amadesi, S., Creminon, C., Lanthorn, T., Geppetti, P., Bunnett, N. W. and Mayer, E. A. (2001) Role of peripheral N-methyl-D-aspartate (NMDA) receptors in visceral nociception in rats. Gastroenterology 120, 1737-1748. https://doi.org/10.1053/gast.2001.24848
  23. Mjellem, N., Lund, A. and Hole, K. (1993) Different functions of spinal 5-HT1A and 5-HT2 receptor subtypes in modulating behaviour induced by excitatory amino acid receptor agonists in mice. Brain Res. 626, 78-82. https://doi.org/10.1016/0006-8993(93)90565-5
  24. Moy, S. S., Nonneman, R. J., Shafer, G. O., Nikolova, V. D., Riddick, N. V., Agster, K. L., Baker, L. K. and Knapp, D. J. (2013) Disruption of social approach by MK-801, amphetamine, and fluoxetine in adolescent C57BL/6J mice. Neurotoxicol. Teratol. 36, 36-46. https://doi.org/10.1016/j.ntt.2012.07.007
  25. Murray, C. W., Cowan, A. and Larson, A. A. (1991) Neurokinin and NMDA antagonists (but not a kainic acid antagonist) are antinociceptive in the mouse formalin model. Pain 44, 179-185. https://doi.org/10.1016/0304-3959(91)90135-K
  26. Nelson, S. B. and Valakh, V. (2015) Excitatory/Inhibitory Balance and Circuit Homeostasis in Autism Spectrum Disorders. Neuron 87, 684-698. https://doi.org/10.1016/j.neuron.2015.07.033
  27. Nozari, M., Shabani, M., Hadadi, M. and Atapour, N. (2014) Enriched environment prevents cognitive and motor deficits associated with postnatal MK-801 treatment. Psychopharmacology 231, 4361-4370. https://doi.org/10.1007/s00213-014-3580-8
  28. Ogren, S. O. and Berge, O. G. (1984) Test-dependent variations in the antinociceptive effect of p-chloroamphetamine-induced release of 5-hydroxytryptamine. Neuropharmacology 23, 915-924. https://doi.org/10.1016/0028-3908(84)90005-4
  29. Raigorodsky, G. and Urca, G. (1990) Spinal antinociceptive effects of excitatory amino acid antagonists: quisqualate modulates the action of N-methyl-D-aspartate. Eur. J. Pharmacol. 182, 37-47. https://doi.org/10.1016/0014-2999(90)90491-N
  30. Rung, J. P., Carlsson, A., RydenMarkinhuhta, K. and Carlsson, M. L. (2005) (+)-MK-801 induced social withdrawal in rats; a model for negative symptoms of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 827-832. https://doi.org/10.1016/j.pnpbp.2005.03.004
  31. Sakurada, T., Manome, Y., Katsumata, K., Tan-No, K., Sakurada, S., Ohba, M. and Kisara, K. (1994a) Comparison of antagonistic effects of sendide and CP-96,345 on a spinally mediated behavioural response in mice. Eur. J. Pharmacol. 261, 85-90. https://doi.org/10.1016/0014-2999(94)90304-2
  32. Sakurada, T., Manome, Y., Tan-No, K., Sakurada, S. and Kisara, K. (1990) The effects of substance P analogues on the scratching, biting and licking response induced by intrathecal injection of N-methyl-D-aspartate in mice. Br. J. Pharmacol. 101, 307-310. https://doi.org/10.1111/j.1476-5381.1990.tb12706.x
  33. Sakurada, T., Yamada, T., Sakurada, S., Kisara, K. and Ohba, M. (1989) Substance P analogues containing D-histidine antagonize the behavioural effects of intrathecally co-administered substance P in mice. Eur. J. Pharmacol. 174, 153-160. https://doi.org/10.1016/0014-2999(89)90307-5
  34. Sakurada, T., Yogo, H., Manome, Y., Tan-No, K., Sakurada, S., Yamada, A., Kisara, K. and Ohba, M. (1994b) Pharmacological characterisation of NK1 receptor antagonist, [D-Trp7]sendide, on behaviour elicited by substance P in the mouse. Naunyn Schmiedebergs Arch. Pharmacol. 350, 387-392.
  35. Schoepp, D. D., Gamble, A. Y., Salhoff, C. R., Johnson, B. G. and Ornstein, P. L. (1990) Excitatory amino acid-induced convulsions in neonatal rats mediated by distinct receptor subtypes. Eur. J. Pharmacol. 182, 421-427. https://doi.org/10.1016/0014-2999(90)90039-9
  36. Svoboda, J., Stankova, A., Entlerova, M. and Stuchlik, A. (2015) Acute administration of MK-801 in an animal model of psychosis in rats interferes with cognitively demanding forms of behavioral flexibility on a rotating arena. Front. Behav. Neurosci. 9, 75. https://doi.org/10.3389/fnbeh.2015.00075
  37. Tan-No, K., Taira, A., Wako, K., Niijima, F., Nakagawasai, O., Tadano, T., Sakurada, C., Sakurada, T. and Kisara, K. (2000) Intrathecally administered spermine produces the scratching, biting and licking behaviour in mice. Pain 86, 55-61. https://doi.org/10.1016/S0304-3959(99)00312-7
  38. Tjolsen, A., Rosland, J. H., Berge, O. G. and Hole, K. (1991) The increasing-temperature hot-plate test: an improved test of nociception in mice and rats. J. Pharmacol. Toxicol. Methods 25, 241-250.
  39. Urca, G. and Raigorodsky, G. (1988) Behavioral classification of excitatory amino acid receptors in mouse spinal cord. Eur. J. Pharmacol. 153, 211-220. https://doi.org/10.1016/0014-2999(88)90608-5
  40. Uzunova, G., Pallanti, S. and Hollander, E. (2016) Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics. World J. Biol. Psychiatry 17, 174-186. https://doi.org/10.3109/15622975.2015.1085597
  41. van der Staay, F. J., Rutten, K., Erb, C. and Blokland, A. (2011) Effects of the cognition impairer MK-801 on learning and memory in mice and rats. Behav. Brain Res. 220, 215-229. https://doi.org/10.1016/j.bbr.2011.01.052
  42. Won, H., Lee, H. R., Gee, H. Y., Mah, W., Kim, J. I., Lee, J., Ha, S., Chung, C., Jung, E. S., Cho, Y. S., Park, S. G., Lee, J. S., Lee, K., Kim, D., Bae, Y. C., Kaang, B. K., Lee, M. G. and Kim, E. (2012) Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature 486, 261-265. https://doi.org/10.1038/nature11208
  43. Wu, H., Wang, X., Gao, Y., Lin, F., Song, T., Zou, Y., Xu, L. and Lei, H. (2016) NMDA receptor antagonism by repetitive MK801 administration induces schizophrenia-like structural changes in the rat brain as revealed by voxel-based morphometry and diffusion tensor imaging. Neuroscience 322, 221-233. https://doi.org/10.1016/j.neuroscience.2016.02.043
  44. Yamamoto, T. and Yaksh, T. L. (1992) Comparison of the antinociceptive effects of pre- and posttreatment with intrathecal morphine and MK801, an NMDA antagonist, on the formalin test in the rat. Anesthesiology 77, 757-763. https://doi.org/10.1097/00000542-199210000-00021

Cited by

  1. Modelling and treating GRIN2A developmental and epileptic encephalopathy in mice vol.143, pp.7, 2019, https://doi.org/10.1093/brain/awaa147