GENERALIZED HYERS-ULAM STABILITY OF A QUADRATIC-CUBIC FUNCTIONAL EQUATION IN MODULAR SPACES

Yang-Hi Lee

Abstract. In this paper, I prove the stability problem for a quadratic-cubic functional equation

$$
\begin{aligned}
f(x+k y) & -k^{2} f(x+y)-k^{2} f(x-y)+f(x-k y) \\
& +f(k x)-\frac{k^{3}-3 k^{2}+4}{2} f(x)+\frac{k^{3}-k^{2}}{2} f(-x)=0
\end{aligned}
$$

in modular spaces by applying the direct method.

1. Introduction

In 1940, Ulam [19] first posed a stability problem in group homomorphisms. In the next year, Hyers [7] gave a clear answer to this problem for additive mappings between Banach spaces. Since then, many mathematicians came to deal with this problem (cf. [1, 6, 11, 15]).

The definitions and terminologies used in this paper were introduced by Nakano [14] and Musielak and Orlicz [13].

Definition 1.1 Let X be a real vector space.
(a) A functional $\rho: X \rightarrow[0, \infty]$ is called a modular if for arbitrary $x, y \in X$,
(i) $\rho(x)=0$ if and only if $x=0$,
(ii) $\rho(\alpha x)=\rho(x)$ for every scaler α with $|\alpha|=1$,
(iii) $\rho(\alpha x+\beta y) \leq \rho(x)+\rho(y)$ if and only if $\alpha+\beta=1$ and $\alpha, \beta>0$,
(b) We say that ρ is a convex modular if the last condition (iii) is replaced by (iii') $\rho(\alpha x+\beta y) \leq \alpha \rho(x)+\beta \rho(y)$ if and only if $\alpha+\beta=1$ and $\alpha, \beta>0$.

[^0]A modular ρ defines a corresponding modular space, i.e., the vector space X_{ρ} given by $X_{\rho}=\{x \in X: \rho(\lambda x) \rightarrow 0$ as $\lambda \rightarrow 0\}$.

Definition 1.2 Let $\left\{x_{n}\right\}$ and x be in X_{ρ}.
(i) The sequence $\left\{x_{n}\right\}$, with $x_{n} \in X_{\rho}$, is ρ-convergent to x and write $x_{n} \rightarrow x$ if $\rho\left(x_{n}-x\right) \rightarrow 0$ as $n \rightarrow \infty$.
(ii) The sequence $\left\{x_{n}\right\}$, with $x_{n} \in X_{\rho}$, is called ρ-Cauchy if $\rho\left(x_{n}-x_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$.
(iii) A subset S of X_{ρ} is called ρ-complete if and only if every ρ-Cauchy sequence is ρ-convergent to an element of S.

Recently, Sadeghi [16] and K. Wongkum etc. [21] investigated the generalized Hyers-Ulam stability of a generalized Jensen functional equation and a quadratic functional equation for mappings from linear spaces into modular spaces, respectively.

A solution of the functional equation

$$
f(x+y)-f(x-y)-2 f(x)-2 f(y)=0
$$

is called a quadratic mapping ($[5,17]$) and a solution of the functional equation

$$
f(x+2 y)-3 f(x+y)+3 f(x)-f(x-y)-6 f(y)=0
$$

is called a cubic mapping. A mapping f is called a quadratic-cubic mapping if f is represented by sum of a quadratic mapping and a cubic mapping. A functional equation is called a quadratic-cubic functional equation provided that each solution of that equation is a quadratic-cubic mapping and every quadratic-cubic mapping is a solution of that equation. Many mathematicians investigated the stability problem for several types of quadratic-cubic functional equations $[3,4,9,10,12,18,20]$. Now, consider the following functional equation

$$
\begin{align*}
f(x+k y) & -k^{2} f(x+y)-k^{2} f(x-y)+f(x-k y) \\
& +f(k x)-\frac{k^{3}-3 k^{2}+4}{2} f(x)+\frac{k^{3}-k^{2}}{2} f(-x)=0, \tag{1.1}
\end{align*}
$$

where f is a mapping from a real vector space to a ρ-complete modular space and k is a fixed real number such that $|k|>\sqrt{2}$. In this paper, we show that the functional equation (1.1) is a quadratic-cubic functional equation if k is a rational number and we prove the stability of that equation by applying the direct method in [7]. More precisely, starting from the given mapping f that approximately satisfies
the functional equation (1.1), we explicitly construct an exact solution F of that equation, which approximates the mapping f, given by

$$
F(x)=\lim _{n \rightarrow \infty} \frac{\left(k^{n}+1\right) f\left(k^{n} x\right)+\left(k^{n}-1\right) f\left(-k^{n} x\right)}{2 k^{3 n}} .
$$

2. Main Results

Throughout this section, let V and W be real vector spaces and let ρ be a convex modular on a real vector space Y. For a given mapping $f: V \rightarrow W$, we use the following abbreviations:

$$
\begin{aligned}
f_{o}(x): & =\frac{f(x)-f-x)}{2}, \quad f_{e}(x):=\frac{f(x)+f-x)}{2} \\
Q f(x, y):= & f(x+y)+f(x-y)-2 f(x)-2 f(y) \\
C f(x, y):= & f(x+2 y)-3 f(x+y)+3 f(x)-f(x-y)-6 f(y), \\
D_{k} f(x, y):= & f(x+k y)-k^{2} f(x+y)-k^{2} f(x-y)+f(x-k y) \\
& +f(k x)-\frac{k^{3}-3 k^{2}+4}{2} f(x)+\frac{k^{3}-k^{2}}{2} f(-x)
\end{aligned}
$$

for all $x, y \in V$. Notice that the solutions of the functional equations $Q f \equiv 0$ and $C f \equiv 0$ are called a quadratic mapping and a cubic mapping, respectively.

We need the following particular case of Baker's theorem [2] to prove Theorem 3.2.

Theorem 2.1 (Theorem 1 in [2]). Suppose that V and W are vector spaces over \mathbb{Q}, \mathbb{R} or \mathbb{C} and $\alpha_{0}, \beta_{0}, \ldots, \alpha_{m}, \beta_{m}$ are scalar such that $\alpha_{j} \beta_{l}-\alpha_{l} \beta_{j} \neq 0$ whenever $0 \leq j<l \leq m$. If $f_{l}: V \rightarrow B$ for $0 \leq l \leq m$ and

$$
\sum_{l=0}^{m} f_{l}\left(\alpha_{l} x+\beta_{l} y\right)=0
$$

for all $x, y \in V$, then each f_{l} is a "generalized" polynomial mapping of "degree" at most $m-1$.

We easily obtain following theorem from Baker's Theorem.
Theorem 2.2. If a mapping $f: V \rightarrow W$ satisfies either the functional equation $D_{k} f(x, y)=0$ for all $x, y \in V$, then f is a "generalized" polynomial mapping of "degree" at most 3.

Suppose that $f, g: V \rightarrow W$ are generalized polynomial mapping of degree at most 3. It is well known that if the equalities $f(k x)=k^{2} f(x)$ and $g(k x)=k^{3} g(x)$ hold for all $x \in V$ and any nonzero fixed rational number k such that $|k| \neq 1$, then f and g are a quadratic mapping and a cubic mapping, respectively.

In the next theorem we will show that the functional equation $D_{k} f \equiv 0$ is a quadratic-cubic functional equation when k be a nonzero fixed rational number such that $|k| \neq 1$.

Theorem 2.3. Let k be a nonzero fixed rational number such that $|k| \neq 1$. A mapping f satisfies the functional equation $D_{k} f(x, y)=0$ for all $x, y \in V$ if and only if f_{e} is quadratic and f_{o} is cubic.

Proof. If a mapping f satisfies the functional equation $D_{k} f(x, y)=0$ for all $x, y \in V$, then the equalities $f_{o}(k x)=k^{3} f_{o}(x)$ and $f_{e}(k x)=k^{2} f_{e}(x)$ follow from the equalities

$$
f_{o}(k x)-k^{3} f_{o}(x)=\frac{D_{k} f(x, 0)-D_{k} f(-x, 0)}{2}, \quad f_{e}(k x)-k^{2} f_{e}(x)=\frac{D_{k} f(x, 0)+D_{k} f(-x, 0)}{2}
$$

for all $x \in V$. Since f_{o} and f_{e} are generalized polynomial mappings of degree at most $3, f_{o}$ is a cubic mapping and f_{e} is a quadratic mapping.

Conversely, assume that f_{o} is a cubic mapping and f_{e} is a quadratic mapping, i.e., f is a quadratic-cubic mapping. Notice that f_{o} satisfies the equality $f_{o}(k x)=k^{3} f_{o}(x)$ and $f_{o}(x)=-f_{o}(-x), f_{e}$ satisfies $f_{e}(k x)-k^{2} f_{e}(x)$ and $f_{e}(x)=f_{e}(-x)$ for all $x \in V$ and all $k \in \mathbb{Q}$, and $f(x)=f_{o}(x)+f_{e}(x)$.

The equalities $D_{2} f_{o}(x, y)=0$ and $D_{3} f_{o}(x, y)=0$ follow from the equalities

$$
\begin{aligned}
& D_{2} f_{o}(x, y)=C f_{o}(x, y)-C f_{o}(x-y, y), \\
& D_{3} f_{o}(x, y)=D_{2} f_{o}(x+y, y)+D_{2} f_{o}(x-y, y)+4 D_{2} f_{o}(x, y)
\end{aligned}
$$

for all $x, y \in V$. If the equality $D_{j} f_{o}(x, y)=0$ holds for all $j \in \mathbb{N}$ when $2 \leq j \leq n-1$, then the equality $D_{n} f_{o}(x, y)=0$ follows from the equality
$D_{n} f_{o}(x, y)=D_{n-1} f_{o}(x+y, y)+D_{n-1} f_{o}(x-y, y)-D_{n-2} f_{o}(x, y)+(n-1)^{2} D_{2} f_{o}(x, y)$
for all $x, y \in V$. Using mathematical induction, we obtain

$$
D_{n} f_{o}(x, y)=0
$$

for all $x, y \in V$ and any $n \in \mathbb{N}$. Since the equality $D_{n} f_{e}(x, y)=0$ follows from the equality

$$
D_{n} f_{e}(x, y)=Q f_{e}(x, n y)-n^{2} Q f_{e}(x, y)
$$

for all $x, y \in V$, we have

$$
D_{n} f(x, y)=0
$$

for all $x, y \in V$ and any $n \in \mathbb{N}$. Using the equalities
$D_{k} f_{o}(x, y)=f_{o}(x+k y)-k^{2} f_{o}(x+y)-k^{2} f_{o}(x-y)+f_{o}(x-k y)+2\left(k^{2}-1\right) f_{o}(x)$,
$D_{k} f_{e}(x, y)=f_{e}(x+k y)-k^{2} f_{e}(x+y)-k^{2} f_{e}(x-y)+f_{e}(x-k y)+2\left(k^{2}-1\right) f_{e}(x)$
for all $x, y \in X$ and any $k \in \mathbb{Q}$, we get

$$
D_{k} f(x, y)=f(x+k y)-k^{2} f(x+y)-k^{2} f(x-y)+f(x-k y)+2\left(k^{2}-1\right) f(x)
$$

for all $x, y \in X$ and any $k \in \mathbb{Q}$. Therefore, if $k \in \mathbb{Q}$ is represented by either $k=\frac{n}{m}$ or $k=\frac{-n}{m}$ for some $n, m \in \mathbb{N}$, then the desired equalities $D_{k} f(x, y)=0$ follows from the equalities

$$
\begin{aligned}
D_{\frac{n}{m}} f(x, y) & =D_{n} f\left(x, \frac{y}{m}\right)-\frac{n^{2}}{m^{2}} D_{m} f\left(x, \frac{y}{m}\right), \\
D_{\frac{-n}{m}} f(x, y) & =D_{\frac{n}{m}} f_{e}(x, y)
\end{aligned}
$$

for all $x, y \in X$ and $n, m \in \mathbb{N}$.
The following properties given in the paper [8] are necessary to prove main theorem.

Remark. Let ρ be a convex modular on X. If $0<\alpha<\beta$ and $\alpha_{i}>0$ with $\sum_{i=1}^{n} \alpha_{i}=1$, then properties $\rho(\alpha x) \leq \rho(\beta x)$ and

$$
\rho\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right) \leq \sum_{i=1}^{n} \alpha_{i} \rho\left(x_{i}\right)
$$

hold for all $x, x_{1}, \ldots, x_{n} \in X$.
Now we will prove the generalized Hyers-Ulam stability of the functional equation $D_{k} f(x, y)=0$.

Theorem 2.4. Let V be a real vector space, Y_{ρ} be a ρ-complete modular space and k be a fixed real number such that $|k|>\sqrt{2}$. Suppose $f: V \rightarrow Y_{\rho}$ satisfies an inequality of the form

$$
\begin{equation*}
\rho\left(D_{k} f(x, y)\right) \leq \varphi(x, y) \tag{2.1}
\end{equation*}
$$

for all $x, y \in V$, where $\varphi: V^{2} \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\sum_{i=0}^{\infty} \frac{\varphi\left(k^{i} x, k^{i} y\right)}{k^{2 i}}<\infty \tag{2.2}
\end{equation*}
$$

for all $x, y \in V$. Then there exists a unique solution $F: V \rightarrow Y_{\rho}$ of the functional equation (1.1) such that

$$
\begin{equation*}
\rho(f(x)-F(x)) \leq \sum_{i=0}^{\infty}\left(\frac{\left|k^{i+1}+1\right|}{2|k|^{3 i+3}} \varphi\left(k^{i} x, 0\right)+\frac{\left|k^{i+1}-1\right|}{2|k|^{3 i+3}} \varphi\left(-k^{i} x, 0\right)\right) \tag{2.3}
\end{equation*}
$$

for all $x \in V$.
Proof. Notice that the inequality $\sum_{i=0}^{\infty}\left(\frac{\left|k^{i+1}+1\right|}{|k|^{3 i+3}}+\frac{\left|k^{i+1}-1\right|}{|k|^{3 i+3}}\right)<1$ holds for $|k|>\sqrt{2}$.
Let $J_{n} f: V \rightarrow Y_{\rho}$ be the mappings defined by

$$
J_{n} f(x):=\frac{\left(k^{n}+1\right) f\left(k^{n} x\right)+\left(k^{n}-1\right) f\left(-k^{n} x\right)}{2 k^{3 n}}
$$

for all $x \in V$ and any $n \in \mathbb{N}$. Then the equality

$$
J_{m+n} f(x)=J_{m} J_{n} f(x)
$$

follows from the equality

$$
\begin{aligned}
& \frac{\left(k^{m+n}+1\right) f\left(k^{n+m} x\right)+\left(k^{m+n}-1\right) f\left(-k^{n+m} x\right)}{2 k^{3 n+3 m}} \\
& =\frac{\left(k^{m}+1\right)\left(k^{n}+1\right) f\left(k^{n+m} x\right)+\left(k^{m}+1\right)\left(k^{n}-1\right) f\left(-k^{n+m} x\right)}{2 k^{3 n+3 m}} \\
& \quad+\frac{\left(k^{m}-1\right)\left(k^{n}+1\right) f\left(-k^{n+m} x\right)+\left(k^{m}-1\right)\left(k^{n}-1\right) f\left(k^{n+m} x\right)}{2 k^{3 n+3 m}}
\end{aligned}
$$

for all $x \in V$ and any $n, m \in \mathbb{N} \cup\{0\}$. Since the inequality

$$
\sum_{i=0}^{\infty}\left(\frac{\left|k^{i+1}+1\right|}{2|k|^{3 i+3}}+\frac{\left|k^{i+1}-1\right|}{2|k|^{3 i+3}}\right)<1
$$

and the equality

$$
J_{i} f(x)-J_{i+1} f(x)=\frac{-\left(k^{i+1}+1\right) D_{k} f\left(k^{i} x, 0\right)}{2 k^{3 i+3}}-\frac{\left(k^{i+1}-1\right) D_{k} f\left(-k^{i} x, 0\right)}{2 k^{3 i+3}}
$$

holds for all $x \in V$ and any $i \in \mathbb{N}$, we have

$$
\begin{align*}
& \rho\left(J_{n} f(x)-J_{n+m} f(x)\right) \\
& =\rho\left(\sum_{i=n}^{n+m-1}\left(J_{i} f(x)-J_{i+1} f(x)\right)\right) \\
& \leq \rho\left(\sum_{i=n}^{n+m-1}\left(\frac{-\left(k^{i+1}+1\right) D_{k} f\left(k^{i} x, 0\right)}{2 k^{3 i+3}}-\frac{\left(k^{i+1}-1\right) D_{k} f\left(-k^{i} x, 0\right)}{2 k^{3 i+3}}\right)\right) \tag{2.4}
\end{align*}
$$

$$
\begin{aligned}
& \leq \sum_{i=n}^{n+m-1}\left(\frac{\left|k^{i+1}+1\right|}{2|k|^{3 i+3}} \rho\left(D_{k} f\left(k^{i} x, 0\right)\right)+\frac{\left|k^{i+1}-1\right|}{2|k|^{3 i+3}} \rho\left(D_{k} f\left(-k^{i} x, 0\right)\right)\right) \\
& \leq \sum_{i=n}^{n+m-1}\left(\frac{\left|k^{i+1}+1\right|}{2|k|^{3 i+3}} \varphi\left(k^{i} x, 0\right)+\frac{\left|k^{i+1}-1\right|}{2|k|^{3 i+3}} \varphi\left(-k^{i} x, 0\right)\right)
\end{aligned}
$$

for all $x \in V$ and any $n, m \in \mathbf{N} \cup\{0\}$. So, it is easy to show that the sequence $\left\{J_{n} f(x)\right\}$ is a Cauchy sequence for all $x \in V$. Since Y_{ρ} is complete, the sequence $\left\{J_{n} f(x)\right\}$ converges for all $x \in V$. Hence, we can define a mapping $F: V \rightarrow Y_{\rho}$ by

$$
F(x):=\lim _{n \rightarrow \infty} \frac{\left(k^{n}+1\right) f\left(k^{n} x\right)+\left(k^{n}-1\right) f\left(-k^{n} x\right)}{2 k^{3 n}}
$$

for all $x \in V$. From the definition of F, we have the properties $\lim _{n \rightarrow \infty} \rho\left(J_{n} f(x)-\right.$ $F(x))=0$ and

$$
F(x)=\lim _{n \rightarrow \infty} J_{m+n} f(x)=\lim _{n \rightarrow \infty} J_{m} J_{n} f(x)=J_{m} \lim _{n \rightarrow \infty} J_{n} f(x)=J_{m} F(x)
$$

for all $x \in V$ and any $m \in \mathbb{N}$. If we choose $m \in \mathbb{N}$ such that

$$
\sum_{i=0}^{\infty}\left(\frac{\left|k^{i+1}+1\right|}{2|k|^{3 i+3}}+\frac{\left|k^{i+1}-1\right|}{2|k|^{3 i+3}}\right)+\frac{\left|k^{m}+1\right|}{2|k|^{3 m}}+\frac{|k|^{m}-1}{2|k|^{3 m}}<1
$$

then we obtain

$$
\begin{aligned}
& \rho(f(x)-F(x)) \\
&= \rho\left(f(x)-J_{m} F(x)\right) \\
&= \rho\left(\sum_{i=0}^{m+n-1}\left(J_{i} f(x)-J_{i+1} f(x)\right)+J_{m} J_{n} f(x)-J_{m} F(x)\right) \\
& \leq \rho\left(\sum_{i=0}^{n+m-1}\left(\frac{-\left(k^{i+1}+1\right) D_{k} f\left(k^{i} x, 0\right)}{2 k^{3 i+3}}-\frac{\left(k^{i+1}-1\right) D_{k} f\left(-k^{i} x, 0\right)}{2 k^{3 i+3}}\right)\right. \\
&\left.+\frac{\left(k^{m}+1\right)\left(J_{n} f-F\right)\left(k^{m} x\right)+\left(k^{m}-1\right)\left(J_{n} f-F\right)\left(-k^{m} x\right)}{2 k^{3 m}}\right) \\
& \leq \sum_{i=0}^{n+m-1}\left(\frac { | k ^ { i + 1 } + 1 | } { 2 | k | ^ { 3 i + 3 } } \varphi \left(\left(k^{i} x, 0\right)+\frac{\left|k^{i+1}-1\right|}{2|k|^{3 i+3}} \varphi\left(\left(-k^{i} x, 0\right)\right)\right.\right. \\
&\left.+\frac{\left|k^{m}+1\right| \rho\left(J_{n} f\left(k^{m} x\right)-F\left(k^{m} x\right)\right)+\left|k^{m}-1\right| \rho\left(J_{n} f\left(-k^{m} x\right)-F\left(-k^{m} x\right)\right)}{2|k|^{3 m}}\right) \\
& \rightarrow \sum_{i=0}^{\infty}\left(\frac{\left|k^{i+1}+1\right|}{2|k|^{3 i+3}} \varphi\left(k^{i} x, 0\right)+\frac{\left|k^{i+1}-1\right|}{2|k|^{3 i+3}} \varphi\left(-k^{i} x, 0\right)\right), \text { as } n \rightarrow \infty
\end{aligned}
$$

for all $x \in V$, i.e., the inequality (2.3) holds for all $x \in V$. From the definition of F and the properties of F, we get

$$
\begin{aligned}
\rho(& \left.\frac{D_{k} F(x, y)}{|k|^{3}+4|k|^{2}+6}\right) \\
= & \rho\left(\frac { 1 } { | k | ^ { 3 } + 4 | k | ^ { 2 } + 6 } \left(\left(F-J_{n} f\right)(x+k y)-k^{2}\left(F-J_{n} f\right)(x+y)\right.\right. \\
& -k^{2}\left(F-J_{n} f\right)(x-y)+\left(F-J_{n} f\right)(x-k y)+\left(F-J_{n} f\right)(k x) \\
& -\frac{k^{3}-3 k^{2}+2}{2}\left(F-J_{n} f\right)(x)+\frac{k^{3}-k^{2}}{2}\left(F-J_{n} f\right)(-x) \\
& \left.\left.+\frac{\left(k^{n}+1\right) D_{k} f\left(k^{n} x, k^{n} y\right)}{2 k^{3 n}}+\frac{\left(k^{n}-1\right) D_{k} f\left(-k^{n} x,-k^{n} y\right)}{2 k^{3 n}}\right)\right) \\
\leq & \frac{1}{|k|^{3}+4|k|^{2}+6}\left(\rho\left(\left(F-J_{n} f\right)(x+k y)\right)+k^{2} \rho\left(\left(F-J_{n} f\right)(x+y)\right)\right. \\
& +k^{2} \rho\left(\left(F-J_{n} f\right)(x-y)\right)+\rho\left(\left(F-J_{n} f\right)(x-k y)\right)+\rho\left(\left(F-J_{n} f\right)(k x)\right) \\
& +\frac{|k|^{3}+3 k^{2}+2}{2} \rho\left(\left(F-J_{n} f\right)(x)\right)+\frac{|k|^{3}+k^{2}}{2} \rho\left(\left(F-J_{n} f\right)(-x)\right) \\
& \left.\left.+\frac{\left|k^{n}+1\right| \rho\left(k^{n} x, k^{n} y\right)}{2|k|^{3 n}}+\frac{\left|k^{n}-1\right| \rho\left(k^{n} x, k^{n} y\right)}{2|k|^{3 n}}\right)\right) \\
\rightarrow & 0, \text { as } n \rightarrow \infty
\end{aligned}
$$

for all $x, y \in V$. Hence we obtain the equality $\frac{D_{k} F(x, y)}{|k|^{3}+4|k|^{2}+6}=0$ for all $x, y \in V$, i.e., F is a solution of the functional equation (1.1).

To prove the uniqueness of F, assume that $F^{\prime}: V \rightarrow Y_{\rho}$ is another solution of the functional equation (1.1) which satisfies the inequality in (2.3). Notice that the property $F^{\prime}(x)=J_{n} F^{\prime}(x)$ is obtained from $J_{0} F^{\prime}(x)-J_{n} F^{\prime}(x)=$ $\sum_{i=0}^{n-1} \frac{-\left(k^{i+1}+1\right) D_{k} F^{\prime}\left(k^{i} x, 0\right)}{2 k^{3 i+3}}-\frac{\left(k^{i+1}-1\right) D_{k} F^{\prime}\left(-k^{i} x, 0\right)}{2 k^{3 i+3}}$ for all $x \in V$ and any $n \in \mathbb{N}$. From the relation

$$
\begin{aligned}
& \rho\left(J_{n} f(x)-F^{\prime}(x)\right) \\
& =\rho\left(J_{n} f(x)-J_{n} F^{\prime}(x)\right) \\
& \leq \rho\left(\frac{\left(k^{n}+1\right)\left(f-F^{\prime}\right)\left(k^{n} x\right)+\left(k^{n}-1\right)\left(f-F^{\prime}\right)\left(-k^{n} x\right)}{2 k^{3 n}}\right) \\
& \leq \sum_{i=0}^{\infty}\left(\frac{\left|k^{n}+1\right|\left|k^{i+1}+1\right|}{2|k|^{3 i+3 n+3}} \varphi\left(k^{i+n} x, 0\right)+\frac{\left|k^{n}+1\right|\left|k^{i+1}-1\right|}{2|k|^{3 i+3 n+3}} \varphi\left(-k^{i+n} x, 0\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{i=0}^{\infty}\left(\frac{\left|k^{n}-1\right|\left|k^{i+1}+1\right|}{\left.2|k|\right|^{3 i+3 n+3}} \varphi\left(-k^{i+n} x, 0\right)+\frac{\left|k^{n}-1\right|\left|k^{i+1}-1\right|}{\left.2|k|\right|^{3 i+3 n+3}} \varphi\left(k^{i+n} x, 0\right)\right) \\
\leq & \sum_{i=0}^{\infty}\left(\frac{\left|k^{n+i+1}+1\right|}{2|k|^{3 i+3 n+3}} \varphi\left(k^{i+n} x, 0\right)+\frac{\left|k^{n+i+1}-1\right|}{2|k|^{3 i+3 n+3}} \varphi\left(-k^{i+n} x, 0\right)\right) \\
\leq & \sum_{i=n}^{\infty}\left(\frac { | k ^ { i + 1 } + 1 | } { 2 | k | ^ { 3 i + 3 } } \varphi \left(\left(k^{i} x, 0\right)+\frac{\left|k^{i+1}-1\right|}{2|k|^{3 i+3}} \varphi\left(\left(-k^{i} x, 0\right)\right)\right.\right. \\
\rightarrow & 0, \text { as } n \rightarrow \infty
\end{aligned}
$$

for all $x \in V$, we get the equality $F^{\prime}(x)=\lim _{n \rightarrow \infty} J_{n} f(x)$ for all $x \in V$, i.e., $F^{\prime}(x)=F(x)$ for all $x \in V$.

We can easily prove the following corollary by using Theorem 2.4.
Collorary 2.5. Let X be a real normed space and let p, θ be nonnegative real constants such that $p<2$. If a mapping $f: X \rightarrow Y_{\rho}$ satisfies the inequality

$$
\rho\left(D_{k} f(x, y)\right) \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in X$, then there exists a unique solution $F: X \rightarrow Y_{\rho}$ of the functional equation (1.1) such that

$$
\begin{equation*}
\rho(f(x)-F(x)) \leq \frac{\theta}{k^{2}-|k|^{p}}\|x\|^{p} \tag{2.5}
\end{equation*}
$$

for all $x \in X$.
Proof. If we put $\varphi(x, y):=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$ for all $x, y \in X$, then φ satisfies the inequality (2.5).

References

1. T. Aoki: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2 (1950), 64-66.
2. J. Baker: A general functional equation and its stability. Proc. Natl. Acad. Sci. 133 (2005), no. 6, 1657-1664.
3. I.-S. Chang \& Y.-S. Jung: Stability of a functional equation deriving from cubic and quadratic functions. J. Math. Anal. Appl. 283 (2003), 491-500.
4. Y.-J. Cho, M. Eshaghi Gordji \& S. Zolfaghari: Solutions and Stability of Generalized Mixed Type QC Functional Equations in Random Normed Spaces. J. Inequal. Appl. 2010 (2010), Art. ID 403101.
5. S. Czerwik: On the stability of the quadratic mapping in the normed space. Abh. Math. Sem. Hamburg 62 (1992), 59-64.
6. P. Găvruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. and Appl. 184 (1994), 431-436.
7. D.H. Hyers: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27 (1941), 222-224.
8. S.-S. Jin \& Y.-H. Lee: Generalized Hyers-Ulam stability of a 3-dimensional quadratic functional equation in modular spaces. Int. J. Math. Anal. (Ruse) 10 (2016), 953-963.
9. C.-J. Lee \& Y.-H. Lee: On the stability of a mixed type quadratic and cubic functional equation. J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 19 (2012), 383-396.
10. Y.-H. Lee: On the Hyers-Ulam-Rassias stability of a quadratic and cubic functional equation. Int. J. Math. Anal. (Ruse) 12 (2018), 577-583.
11. Y.-H. Lee \& K.-W. Jun: On the stability of approximately additive mappings. Proc. Amer. Math. Soc. 128 (2000), 1361-1369.
12. Y.-H. Lee \& S.-M. Jung: Fuzzy stability of the cubic and quadratic functional equation. Appl. Math. Sci. (Ruse) 10 (2016), 2671-2686.
13. J. Musielak \& W. Orlicz: On modular spaces. Studia Mathematica 18 (1959), 591-597.
14. H. Nakano: Modular Semi-Ordered Spaces. Tokyo, Japan, 1959.
15. Th.M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc., 72 (1978), 297-300.
16. G. Sadeghi: A fixed point approach to stability of functional equations in modular spaces. Bull. the Malays. Math. Sci. Soc. 37 (2014) 333-344.
17. F. Skof: Proprietà locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
18. W. Towanlong \& P. Nakmahachalasint: A mixed-type quadratic and cubic functional equation and its stability. Thai J. Math. 8 (2012), no. 4, 61-71.
19. S.M. Ulam: Problems in Modern Mathematics. Wiley, New York, 1964.
20. Z. Wang \& W.X. Zhang: Fuzzy stability of quadratic-cubic functional equations. Acta Math. Sin. (Engl. Ser.) 27 (2011), 2191-2204.
21. K. Wongkum, P. Chaipunya \& Poom Kumam: On the generalized Ulam-Hyers-Rassias stability of quadratic mappings in modular spaces without Δ_{2}-conditions. J. Funct. Spaces (2015), Article ID 461719, 6 pages.

Department of Mathematics Education, Gongju National University of Education, Gonguu 32553, Republic of Korea
Email address: lyhmzi@gjue.ac.kr

[^0]: Received by the editors November 24, 2018. Accepted December 22, 2018.
 2010 Mathematics Subject Classification. 39B82, 39B52.
 Key words and phrases. generalized Hyers-Ulam stability, quadratic-cubic functional equation, direct method, modular space.

