DOI QR코드

DOI QR Code

위성 탑재용 천문력 생성 프로그램 개발

Development of Planetary Ephemeris Generation Program for Satellite

  • 투고 : 2018.11.06
  • 심사 : 2019.01.29
  • 발행 : 2019.03.01

초록

궤도상에 있는 인공위성은 천문력 기반 태양 모델을 사용하여 기준 벡터를 형성한다. 이를 위해 제트 추진 연구소(JPL)에서 개발한 천문력인 DE-Series, 또는 Vallado가 제안한 기준 벡터 생성식을 사용한다. DE-Series는 체비셰프 다항식의 수치 계수를 제공하는데 정밀도가 높다는 장점이 있지만 인공위성의 탑재 컴퓨터의 계산 부담이 있으며, Vallado 방식은 생성식을 통해 태양 벡터를 간단히 구할 수 있지만 낮은 정밀도를 제공한다. 본 논문에서는 DE-Series를 통해 얻은 태양의 위치를 체비셰프 다항식으로 Curve fitting하여, 관성좌표계에서의 태양 위치좌표를 구할 수 있는 체비셰프 다항식 계수를 제공하는 프로그램을 개발하였다. 기존 방식에 비해 정밀도를 향상시킬 수 있었으며, 제안된 방법은 고성능, 고정밀 초소형위성 임무에 활용될 수 있다.

The satellites in orbit use a sun reference vector from solar model based the ephemeris. To get the ephemeris, we use DE-Series, an ephemeris developed by the Jet Propulsion Laboratory (JPL), or the reference vector generation formula proposed by Vallado. The DE-Series provides the numerical coefficients of Chebyshev polynomials, which have the advantage of high precision, but there is a computational burden on the satellite. The Vallado's method has low accuracy, although the sun vector can be easily obtained through the sun vector generation equation. In this paper, we have developed a program to provide the Chebyshev polynomial coefficients to obtain the sun position coordinates in the inertial coordinate system. The proposed method can improve the accuracy compared to the conventional method and can be used for high - performance, high - precision nano satellite missions.

키워드

참고문헌

  1. Folkner, W. M., Williams, J. G., Boggs, D. H., Park, R. S., and Kuchynka, P., "The planetary and lunar ephemerides DE430 and DE431," Interplanetary Network Progress Report 196, 2014.
  2. Vallado, D. A., "Fundamentals of astrodynamics and applications," Springer Science & Business Media, Vol. 12., 2001.
  3. Bretagnon, P., and Francou, G., "Planetary theories in rectangular and spherical variables-VSOP 87 solutions," Astronomy and Astrophysics 202, 1988, pp.309-315.
  4. Meeus, J. H., "Astronomical algorithms. Willmann-Bell," Incorporated, 1991, ISBN 0-943396-35-2.
  5. Kim, Y. D., Bang, H. C., and Kim, J. H., "Sensors and Actuators of Satellite Attitude Control," Journal of the Institute of Control, Automation and Systems Engineer, Vol. 3, No. 3, 1997, pp.29-35.
  6. Lee, S. H., Yu, J., Lim, Y. C., and Gwak, H. K., "A Satellite Attitude Compensation Scheme Using Sun Sensor," Journal of the Institute of Control, Automation and Systems Engineer, Vol. 13, No. 7, 2007, pp.703-710. https://doi.org/10.5302/J.ICROS.2007.13.7.703
  7. Daffalla, M. M., TagElsir, A., and Kajo, A. S., "Hardware selection for attitude determination and control subsystem of 1U cube satellite," Computing, Control, Networking, Electronics and Embedded Systems Engineering (ICCNEEE), International Conference on. IEEE, 2015, pp.118-122.
  8. Shuster, M. D., and Oh, S. D., "Three - Axis Attitude Determination from Vector Observations," Journal of Guidance, Control and Dynamics, Vol. 4, No. 1, 1981, pp.70-77. https://doi.org/10.2514/3.19717
  9. O'Keefe, S. A., "Autonomous Sun-Direction Estimation Using Partially Underdetermined Coarse Sun Sensor Configurations," Ph.D., Department of Aerospace Engineering Sciences, University of Colorado, 2015, p.175.