DOI QR코드

DOI QR Code

플라즈마 표면 처리에 따른 AZO 박막의 특성 변화

Characterization of AZO Thin Film by Plasma Surface Treatment

  • 우종창 (대덕대학교 반도체자동화과) ;
  • 김관하 (대덕대학교 반도체자동화과)
  • Woo, Jong-Chang (Department of Semiconductor Automation, Daeduk University) ;
  • Kim, Gwan-Ha (Department of Semiconductor Automation, Daeduk University)
  • 투고 : 2018.12.19
  • 심사 : 2019.01.21
  • 발행 : 2019.03.01

초록

There is a need for the development of transparent conductive materials that are economical and environmentally friendly with exhibit low resistivity and high transmittance in the visible spectrum. In this study, the deposition rate and uniformity of Al-doped ZnO-thin films were improved by changing the Z-motion of the sputtering system. The deposition rate and the uniformity were determined to be 3.44 nm/min and 1.23%, respectively, under the 10 mm Z-motion condition. During $O_2$ plasma treatment, the intrusion-type metal elements in the thin film were reduced, which contributed to an oxygen vacancy reduction in addition to structural stabilization. Moreover, the sheet resistance was more easily saturated.

키워드

JJJRCC_2019_v32n2_147_f0001.png 이미지

Fig. 1. Schematic drawing of sputtering system.

JJJRCC_2019_v32n2_147_f0002.png 이미지

Fig. 2. Deposition rate and uniformity of AZO thin film as a function of Z-motion.

JJJRCC_2019_v32n2_147_f0003.png 이미지

Fig. 3. SEM image of AZO thin film as a function of Z-motion.

JJJRCC_2019_v32n2_147_f0004.png 이미지

Fig. 4. Sheet resistance of AZO thin film as a function of elapsed time.

JJJRCC_2019_v32n2_147_f0005.png 이미지

Fig. 5. Reflectance of AZO thin film as a function of plasma treatment conditions.

JJJRCC_2019_v32n2_147_f0006.png 이미지

Fig. 6. Transmittance of AZO thin film as a function of plasma treatment conditions.

JJJRCC_2019_v32n2_147_f0007.png 이미지

Fig. 7. Optical energy bandgap of AZO thin film as a function of plasma treatment conditions.

Table 1. Process parameter & conditions.

JJJRCC_2019_v32n2_147_t0001.png 이미지

참고문헌

  1. I. S. Park, Ph. D. Thesis, Characterization of Al-doped ZnO films deposited by DC magnetron sputtering and sol-gel, p. 1-2, Pusan National University, Busan (2007).
  2. H. L. Shen, H. Zhang, L. F. Lu, F. Jiang, and C. Yang, Prog. Nat. Sci.: Mater. Int., 20, 44 (2010). [DOI: https://doi.org/10.1016/S1002-0071(12)60005-7]
  3. A. Kalaivanan, S. Perumal, N. N. Pillai, and K. R. Murali, Mater. Sci. Semicond. Process., 14, 94 (2011). [DOI: https://doi.org/10.1016/j.mssp.2011.01.002]
  4. Y. B. Xiao, S. M. Kong, E. H. Kim, and C. W. Chung, Sol. Energy Mater. Sol. Cells, 95, 264 (2011). [DOI: https://doi.org/10.1016/j.solmat.2010.02.016]
  5. K. C. Sanal, M. Majeesh, and M. K. Jayaraj, Proc. SPIE 8818, Nanostructured Thin Films VI, 881814 (SPIE Nano Science + Engineering, San Diego, USA, 2013) p. 14-20.
  6. M. S. Kim, K. G. Yim, J. S. Son, and J. Y. Leem, Bull. Korean Chem. Soc., 33, 1235 (2012). [DOI: https://doi.org/10.5012/bkcs.2012.33.4.1235]
  7. J. Lee, J. Son, M. Kim, K. H. Kwon, and H. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 26, 836 (2013). [DOI: https://doi.org/10.4313/JKEM.2013.26.11.836]
  8. E. Kusano, N. Kashiwagi, T. Kobayashi, H. Nanto, and A. Kinbara, Surf. Coat. Technol., 108, 177 (1998). [DOI: https://doi.org/10.1016/S0257-8972(98)00650-1]
  9. M. Thirumoorthi and J.T.J. Prakash, J. Asian Ceram. Soc., 4, 124 (2016). [DOI: https://doi.org/10.1016/j.jascer.2016.01.001]
  10. M. Mazur, J. Domaradzki, D. Kaczmarek, S. Moh, and F. Placido, Proc. 2010 International Students and Young Scientists Workshop "Photonics and Microsystems" (IEEE, Szklarska Poreba, Poland) p. 60.