Figure 2.1. A University electricity consumption data.
Figure 2.2. Everyday electricity consumption plot.
Figure 4.1. Spline smoothing with 16 bases.
Figure 4.2. Cluster plot with smooth curves (left: 365 curves, right: cluster means).
Figure 4.3. Derivative plots in clusters.
Figure 4.4. Density plot in each cluster.
Figure 4.5. Smooth functions in each cluster (16 spline bases).
Figure 4.6. Silhouette plot for cluster validity.
Table 4.1. Comparison of clusters via distribution according to weekdays
Table 4.2. Comparison of clusters via distribution according to month
Table 4.3. Classification according to functional linear discriminant functions obtained
참고문헌
- Abdel-Aal, R. E and Al-Garni, A. Z. (1997). Forecasting monthly electric energy consumption in eastern Saudi Arabia using univariate time-series analysis, Energy, 22, 1059-1069. https://doi.org/10.1016/S0360-5442(97)00032-7
- Andersson, J. and Lillestol, J. (2010). Modeling and forecasting electricity consumption by functional data analysis, Journal of Energy Markets, 3, 3-14. https://doi.org/10.21314/JEM.2010.038
- Antoch, J., Prchal, L., De Rosa, M., and Sarda, P. (2010). Electricity consumption prediction with functional linear regression using spline estimators, Journal of Applied Statistics, 37, 2027-2041. https://doi.org/10.1080/02664760903214395
- Araki, Y., Konishi, S., Kawano, S., and Matsui, H. (2009). Functional logistic discrimination via regularized basis expansions, Communications in Statistics-Theory and Methods, 38, 2944-2957. https://doi.org/10.1080/03610920902947246
- Bianchi, L., Jarrett, J., and Hanumara, R. C. (1998). Improving forecasting for telemarketing centers by ARIMA modeling with intervention, International Journal of Forecasting, 14, 497-504. https://doi.org/10.1016/S0169-2070(98)00037-5
- Bouveyron, C. and Jacques, J. (2011). Model-based clustering of time series in group-specific functional subspaces, Advances in Data Analysis and Classification, 5, 281-300. https://doi.org/10.1007/s11634-011-0095-6
- Chang, C., Chen, Y., and Ogden, R. T. (2014). Functional data classification: a wavelet approach. Computational Statistics, 29, 1497-1513. https://doi.org/10.1007/s00180-014-0503-4
- Chiou, J. M. (2012). Dynamical functional prediction and classification, with application to traffic flow prediction, Annals of Applied Statistics, 6, 1588-1614. https://doi.org/10.1214/12-AOAS595
- Chiou, J. M. and Li, P. L. (2007). Functional clustering and identifying substructures of longitudinal data, Journal of the Royal Statistical Society, Series B, 69, 679-699. https://doi.org/10.1111/j.1467-9868.2007.00605.x
- Chujai, P., Kerdprasop, N., and Kerdprasop, K. (2013). Time series analysis of household electric consumption with ARIMA and ARMA models, The International MultiConference of Engineers and Computer Scientists, 1, 295-300.
- Chang, C., Chen, Y., and Ogden, R. T. (2014). Functional data classification: a wavelet approach, Computational Statistics, 29, 1497-1513. https://doi.org/10.1007/s00180-014-0503-4
- Cryer, J. and Chan, K. (2008). Time Series Analysis (2nd ed), Springer, New York.
- Ferraty, F. and Vieu, P. (2003). Curves discrimination: a nonparametric functional approach, Computational Statistics & Data Analysis, 44, 161-173. https://doi.org/10.1016/S0167-9473(03)00032-X
- Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis, Springer, New York.
- Fumi, A., Pepe, A., Scarabotti, L., and Schiraldi, M. M. (2013). Fourier analysis for demand forecasting in a fashion company, International Journal of Engineering Business Management, 5, 1-10. https://doi.org/10.5772/52800
- Gardner, E. S. (1985). Exponential smoothing: the state of the art, Journal of Forecasting, 4, 1-28. https://doi.org/10.1002/for.3980040103
- Goia, A., May, C., and Fusai, G. (2010). Functional clustering and linear regression for peak load forecasting, International Journal of Forecasting, 26, 700-711. https://doi.org/10.1016/j.ijforecast.2009.05.015
- Hall, P., Muller, H. G., and Wang, J. L. (2006). Properties of principal component methods for functional and longitudinal data analysis, Annals of Statistics, 34, 1493-1517. sampled curves, Journal of the Royal Statistical Society Series B-Statistical Methodology, 63, 533-550. https://doi.org/10.1214/009053606000000272
- James, G. M., Hastie, T., and Sugar, C. (2000). Principal component models for sparse functional data, Biometrika, 87, 587-602. https://doi.org/10.1093/biomet/87.3.587
- Karhunen, K. (1947). On linear methods in probability theory, Annales Academiae Scientiarum Fennicae, AI 37, 3-79.
- Kim, B. and Kim, J. (2013). Time series models for daily exchange rate data, The Korean Journal of Applied Statistics, 26, 14-27.
- Kimball, B. A. (1974). Smoothing data with Fourier transformations, Agronomy Journal, 66, 259-262. https://doi.org/10.2134/agronj1974.00021962006600020023x
- Leng, X. and Muller, H. G. (2006). Time ordering of gene co-expression, Biostatistics, 7, 569-584. https://doi.org/10.1093/biostatistics/kxj026
- Loeve, M. (1945). Nouvelles classes de lois limits, Bulletin de la S. M. F., 73, 107-126.
- Matsui, H., Araki, T., and Konishi, S. (2011). Multiclass functional discriminant analysis and its application to gesture recognition, Journal of Classification, 28, 227-243. https://doi.org/10.1007/s00357-011-9082-z
- McCullagh, P. (1983). Quasi-likelihood functions, Annals of Statistics, 11, 59-67. https://doi.org/10.1214/aos/1176346056
- Ramsay, J. and Silverman, B. (1997). Functional Data Analysis. Springer.
- Rincon, M. and Ruiz-Medina, M. D. (2012). Wavelet-RKHS-based functional statistical classification, Advances in Data Analysis and Classification, 6, 201-217. https://doi.org/10.1007/s11634-012-0112-4
- Tan, Z., Zhang, J., Wang, J., and Xu, J. (2010). Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models, Applied Energy, 87, 3606-3610. https://doi.org/10.1016/j.apenergy.2010.05.012
- Wang, X. H., Ray, S., and Mallick, B. K. (2007). Bayesian curve classification using wavelets, Journal of the American Statistical Association, 102, 962-973. https://doi.org/10.1198/016214507000000455
- Zhu, H. X., Brown, P. J., and Morris, J. S. (2012). Robust classification of functional and quantitative image data using functional mixed models, Biometrics, 68, 260-1268.
- Zhu, H. X., Vannucci, M., and Cox, D. D. (2010). A Bayesian hierarchical model for classification with selection of functional predictors, Biometrics, 66, 463-473. https://doi.org/10.1111/j.1541-0420.2009.01283.x