DOI QR코드

DOI QR Code

물리적 지진모델링 기반 강지진동 모사를 통한 진도 감쇠 특성 분석

An Analysis of Intensity Attenuation Characteristics by Physics-based Strong Ground-Motion Simulation

  • 김수경 (한국교원대학교 지구과학교육과) ;
  • 송석구 (한국지질자원연구원 지진연구센터) ;
  • 경재복 (한국교원대학교 지구과학교육과)
  • Kim, Su-Kyong (Department of Earth Science Education, Korea National University of Education) ;
  • Song, Seok Goo (Earthquake Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Kyung, Jai Bok (Department of Earth Science Education, Korea National University of Education)
  • 투고 : 2018.12.26
  • 심사 : 2019.02.15
  • 발행 : 2019.02.28

초록

본 연구에서는 미국 남캘리포니아 지진센터에서 개발한 물리적 지진모델링 기반 광대역 강지진동 모사 플랫폼(버전 16.5)을 활용하여, 규모 6.0, 6.5, 7.0 지진에 대한 진도 감쇠 특성 분석을 수행하였다. 지진 발생 위치는 2016년 규모 5.8 경주 지진 진앙 인근을 가정하였으나 지각 전파 모델의 경우 남캘리포니아 강지진동 모사 플랫폼에서 제공하는 미국의 대표적인 지각 모델 두 개를 사용하였다. 하나는 판 내부를 대표하는 미국 중동부 지역(Central and Eastern United States, CEUS) 모델이고 다른 하나는 판의 경계를 대표하는 미 서부 지역(LA Basin) 모델이다. 버전 16.5 플랫폼에는 5개의 모델링 방법론이 제시되고 있으며 본 연구에서는 Song 모델과 Exsim 모델을 사용하였다. 동일 규모의 지진이라 하더라도 지진발생 환경이 다른 지역(CEUS vs LA Basin)에서는 같은 진앙 거리에서 진도 2 등급에 가까운 차이가 발생할 수 있음을 본 연구를 통해서 발견하였다. 본 연구에서 나타난 지역별 진도 감쇠 특성의 차이를 감안할 때 한반도에서 좀 더 정밀한 지진재해 평가를 위해서는 지역에 적합한 진도 감쇠 특성을 이해하는 것이 중요할 것으로 판단되며 본 연구는 지역 특화된 진도 감쇠 특성을 고려하지 않을 경우 진도 감쇠 분포의 불확실성 정도를 잘 보여준다.

In this study, we analyzed the intensity attenuation for M 6.0, 6.5, and 7.0 earthquakes using the broadband strong ground motion simulation platform based on the physical seismic modeling developed by the US Southern California Earthquake Center (SCEC). The location of the earthquake was assumed to be near the epicenter of the 2016 M 5.8 Gyeongju earthquake, but two of the representative US regional models provided by the SCEC strong ground motion simulation platform were used for the propagation model. One is the Central and Eastern United States (CEUS) model representing the intraplate region, and the other is the LA Basin model representing the interplate region. Five modeling methodologies are presented in the version 16.5 of the simulation platform, and Song and Exsim models were used in this study. In the analysis, we found that different intensity attenuation patterns can be observed with the same magnitude of earthquakes, especially depending on the region (CEUS vs LA Basin). Given the same magnitude and distance, the instrumental intensity in the CEUS region (intraplate) could be larger by a unit of 2 than that in the LA Basin region (interplate). Given the difference of intensity attenuation patterns observed in the study, it is important to know the regional intensity attenuation characteristics to understand the accurate level of seismic hazard imposed in the Korean Peninsula. This study also shows the level of the uncertainty of intensity attenuation if region specific attenuation characteristics are not considered.

키워드

참고문헌

  1. Assatourians, K. and Atkinson, G.M., 2012, EXSIM12: A stochastic finite-fault computer program in FORTRAN, http://www.seismotoolbox.ca.
  2. Atkinson, G.M. and Assatourians, K., 2015, Implementation and validation of EXSIM (A stochastic finite-fault ground-motion simulation algorithm) on the SCEC broadband platform, Seismological Research Letters, 86(1), 48-60. https://doi.org/10.1785/0220140097
  3. Bellam, S.S., 2012, Assessment of interplate and intraplate earthquakes, M.S. Thesis, Texas A&M University, USA.
  4. Boore, D.M., 1983, Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra, Bulletin of the Seismological Society of America, 73(6),1865-1894.
  5. Boore, D.M., 2003, Simulation of ground motion using the stochastic method, Pure and Applied Geophysics, 160, 635-676. https://doi.org/10.1007/PL00012553
  6. Boore, D. M., 2009, Comparing stochastic point-source and finite-source ground-motion simulations: SMSIM and EXSIM, Bulletin of the Seismological Society of America, 99, 3202-3216. https://doi.org/10.1785/0120090056
  7. Brune, J.N., 1970, Tectonic stress and the spectra of seismic shear waves from earthquakes, Journal of Geophysical Research, 75(26), 4997-5009. https://doi.org/10.1029/JB075i026p04997
  8. Brune, J.N., 1971, Tectonic stress and the spectra of seismic shear waves from earthquakes: Correction, Journal of Geophysical Research, 76(20), 5002. https://doi.org/10.1029/JB076i020p05002
  9. Dreger, D.S., Beroza, G.C., Day, S.M., Goulet, C.A., Jordan, T.H., Spudich, P.A., and Stewart, J.P., 2015, Validation of the SCEC Broadband Platform V14.3 Simulation Methods Using Pseudospectral Acceleration Data, Seismological Research Letters, 86(1), 39-47. https://doi.org/10.1785/0220140118
  10. Graves, R.W. and Pitarka, A., 2015. Refinements to the Graves and Pitarka (2010) broadband ground-motion simulation method, Seismological Research Letters, 86(1), 75-80. https://doi.org/10.1785/0220140101
  11. Graves, R.W. and Pitarka, A., 2010, Broadband ground-motion simulation using a hybrid approach, Bulletin of the Seismological Society of America, 100(5A), 2095-2123. https://doi.org/10.1785/0120100057
  12. Guzman, L.R., Graves, R.W., Olsen, K.B., Boyd, O.S., Cramer, C., Hartzell, S., Ni, S., Somerville, P., Williams, R.A., and Zhong, J., 2015, Intraplate earthquakes: "Stable" central united states-New Madrid, Missouri, 1811-1812, Bulletin of the Seismological Society of America, 105(4), 1961-1988. https://doi.org/10.1785/0120140330
  13. Jo, N.D. and Baag, C.E., 2001, Stochastic prediction of strong ground motions in Southern Korea, Journal of the Earthquake Engineering Society of Korea, 5(4), 17-26.
  14. KiM, U.H., Kim, S.K., and Baag, C.E., 2006, Optimization plan research on network of accelerometer and instrumental intensity map, Earthquake Engineering Society of Korea, Korea Meteorological Agency Report, 3-107.
  15. Kyung, J.B., 2010, Paleoseismological study and evaluation of maximum earthquake magnitude along the Yangsan and Ulsan fault zones in the southeastern part of Korea, Geophysics and Geophysical Exploration, 13(3), 187-197.
  16. Lee, K.H. and Yang, W.S., 2006, Historical seismicity of Korea, Bulletin of the Seismological Society of America, 96(3), 846-855. https://doi.org/10.1785/0120050050
  17. Maechling, P.J., 2015, Overview of the SCEC Broadband Platform, California: Southern California Earthquake Center.
  18. Motazedian, D. and Atkinson, G.M., 2005, Stochastic finite-fault modeling based on a dynamic corner frequency. Bulletin of the Seismological Society of America, 95, 995-1010. https://doi.org/10.1785/0120030207
  19. Park, D.H., Lee, J.M., Baag, C.E., and Kim, J.K., 2001, Stochastic prediction of strong ground motions and attenuation equations in the Southeastern Korean Peninsula, Journal of the Geological Society of Korea, 37(1), 21-30.
  20. Rhie, J.K., 2010, Evaluation of ground shaking due to near faulting source, Seoul National University, Research Report 2010-1, 147 p.
  21. Scholz, C.H., Aviles, C.A., and Wesnousky, S.G., 1986, Scaling differences between large interplate and intraplate earthquakes, Bulletin of the Seismological Society of America, 76(1), 65-70.
  22. Song, S.G., Yun, K.H., and Kwak, S.M., 2018, Investigating the characteristics of recorded strong ground motions of the 9.12 Gyeongju earthquake, using the SCEC BBP, Proceedings of EESK Conference-Spring 2018, Incheon : Inha University.
  23. Song, S.G., 2016, Developing a generalized pseudo-dynamic source model of Mw 6.5-7.0 to simulate strong ground motions, Geophysical Journal International, 204, 1254-1265. https://doi.org/10.1093/gji/ggv521
  24. Song, S.G., Dalguer, L.A., and Mai, P.M., 2014, Pseudo-dynamic source modeling with 1-point and 2-point statistics of earthquake source parameters, Geophysical Journal International, 196, 1770-1786. https://doi.org/10.1093/gji/ggt479
  25. Trifunac, M.D. and Brady, A.G., 1975, On the correlation of seismic intensity scales with the peaks of recorded strong ground motion. Bulletin of the Seismological Society of America, 65(1), 139-162.
  26. Wald, D.J., Quitoriano, V., Heaton, T.H., and Kanamori, H., 1999, Relationships between peak ground acceleration, peak ground velocity, and modified merealli intensity in California, Earthq. Spectra, 15(3), 557-564. https://doi.org/10.1193/1.1586058