References
- Steenhuisen F, Wilson SJ. 2015. Identifying and characterizing major emission point sources as a basis for geospatial distribution of mercury emissions inventories. Atmos. Environ. 112: 167-177. https://doi.org/10.1016/j.atmosenv.2015.04.045
- Santos-Gandelman JF, Giambiagi-deMarval M, Muricy G, Barkay T, Laport MS. 2014. Mercury and methylmercury detoxification potential by sponge-associated bacteria. Antonie Leeuwenhoek 106: 585-590. https://doi.org/10.1007/s10482-014-0224-2
- Abbas Z, Chaudary MN, Raza A, Mehmood A. 2012. Toxicity of mercury in different samples (water and soils) and its exposure in pakistan. Sci. Int. 24: 421-429.
- Sedlmeier R, Altenbuchner J. 1992. Cloning and DNA sequence analysis of the mercury resistance genes of Streptomyces lividans. Mol. Gen. Genet. 236: 76-85. https://doi.org/10.1007/BF00279645
- Nakamura K, Silver S. 1994. Molecular analysis of mercury-resistant Bacillus isolates from sediment of Minamata Bay, Japan. Appl. Environ. Microbiol. 60: 4596-4599. https://doi.org/10.1128/AEM.60.12.4596-4599.1994
- Bogdanova E, Bass I, Minakhin L, Petrova M, Mindlin S, Volodin A, et al. 1998. Horizontal spread of mer operons among Gram-positive bacteria in natural environments. Microbiology 144: 609-620. https://doi.org/10.1099/00221287-144-3-609
- Lund PA, Ford SJ, Brown NL. 1986. Transcriptional regulation of the mercury-resistance genes of transposon Tn501. J. Gen. Microbiol. 132: 465-480.
- Moore MJ, Distefano MD, Zydowsky LD, Cummings RT, Walsh CT. 1990. Organomercurial lyase and mercuric ion reductase: nature's mercury detoxification catalysts. Acc. Chem. Res. 23: 301-308. https://doi.org/10.1021/ar00177a006
- Huang CC, Narita M, Yamagata T, Endo G. 1999. Identification of three merB genes and characterization of a broad-spectrum mercury resistance module encoded by a class II transposon of Bacillus megaterium strain MB1. Gene 239: 361-366. https://doi.org/10.1016/S0378-1119(99)00388-1
- Hamlett N, Landale E, Davis B, Summers A. 1992. Roles of the Tn21 merT, merP, and merC gene products in mercury resistance and mercury binding. J. Bacteriol. 174: 6377-6385. https://doi.org/10.1128/jb.174.20.6377-6385.1992
- Barkay T, Miller SM, Summers AO. 2003. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol. Rev. 27: 355-384. https://doi.org/10.1016/S0168-6445(03)00046-9
- Kiyono M, Sone Y, Nakamura R, Pan-Hou H, Sakabe K. 2009. The MerE protein encoded by transposon Tn21 is a broad mercury transporter in Escherichia coli. FEBS Lett. 583: 1127-1131. https://doi.org/10.1016/j.febslet.2009.02.039
- Baneyx F, Mujacic M. 2004. Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol. 22: 1399. https://doi.org/10.1038/nbt1029
- Li M, Su Z-G, Janson J-C. 2004. In vitro protein refolding by chromatographic procedures. Protein Expr. Purif. 33: 1-10. https://doi.org/10.1016/j.pep.2003.08.023
- Tsumoto K, Ejima D, Kumagai I, Arakawa T. 2003. Practical considerations in refolding proteins from inclusion bodies. Protein Expr. Purif. 28: 1-8. https://doi.org/10.1016/S1046-5928(02)00641-1
- Yamaguchi H, Miyazaki M. 2014. Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies. Biomolecules 4: 235-251. https://doi.org/10.3390/biom4010235
- Bajorunaite E, Cirkovas A, Radzevicius K, Larsen KL, Sereikaite J, Bumelis V-A. 2009. Anti-aggregatory effect of cyclodextrins in the refolding process of recombinant growth hormones from Escherichia coli inclusion bodies. Int. J. Biol. Macromol. 44: 428-434. https://doi.org/10.1016/j.ijbiomac.2009.03.005
- Normand P. 1995. Utilisation des sequences 16S pour le positionnement phyletique d'un organisme inconnu. Oceanis 21: 31-56.
- Amin A, Latif Z. 2017. Screening of mercury-resistant and indole-3-acetic acid producing bacterial-consortium for growth promotion of Cicer arietinum L. J. Basic Microbiol. 57: 204-217. https://doi.org/10.1002/jobm.201600352
- Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M, et al. 2012. Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491: 779. https://doi.org/10.1038/nature11580
- Cook GA, Stefer S, Opella SJ. 2011. Expression and purification of the membrane protein p7 from hepatitis C virus. J. Pept. Sci. 96: 32-40. https://doi.org/10.1002/bip.21453
- Amin A, Latif Z. 2017. Cloning, expression, isotope labeling, and purification of transmembrane protein MerF from mercury resistant Enterobacter sp. AZ-15 for NMR studies. Front. Microbiol. 8: 1250. https://doi.org/10.3389/fmicb.2017.01250
- Das BB, Park SH, Opella SJ. 2015. Membrane protein structure from rotational diffusion. Biochim. Biophys. Acta (BBA)-Biomembr. 1848: 229-245. https://doi.org/10.1016/j.bbamem.2014.04.002
- Elly CT. 1973. Dithizone procedure for mercury analysis. J. Water Pollut. Control Fed. 940-945.
- Humaira K, Mohammad J, Mohammad I. 2005. A simple spectrophotometric determination of trace level mercury using 1,5-diphenylthiocarbazone solubilized in micelle. Anal. Sci. 21: 507-512. https://doi.org/10.2116/analsci.21.507
- Chang JS, Huang JC. 1998. Selective adsorption/recovery of Pb, Cu, and Cd with multiple fixed beds containing immobilized bacterial biomass. Biotechnol. Prog. 14: 735-741. https://doi.org/10.1021/bp980070y
- Sathyavathi S, Manjula A, Rajendhran J, Gunasekaran P. 2013. Biosynthesis and characterization of mercury sulphide nanoparticles produced by Bacillus cereus MRS-1. Indian J. Exp. Biol. 51: 973-978.
- Santos-Gandelman JF, Cruz K, Crane S, Muricy G, Giambiagi-deMarval M, Barkay T, et al. 2014. Potential application in mercury bioremediation of a marine sponge-isolated Bacillus cereus strain Pj1. Curr. Microbiol. 69: 374-380. https://doi.org/10.1007/s00284-014-0597-5
- Dash HR, Das S. 2015. Bioremediation of inorganic mercury through volatilization and biosorption by transgenic Bacillus cereus BW-03 (PW-05). Int. Biodeterior. Biodegrad. 103: 179-185. https://doi.org/10.1016/j.ibiod.2015.04.022
- Ma C, Marassi FM, Jones DH, Straus SK, Bour S, Strebel K, et al. 2002. Expression, purification, and activities of fulllength and truncated versions of the integral membrane protein Vpu from HIV-1. Protein Sci. 11: 546-557. https://doi.org/10.1110/ps.37302
- Clark EDB. 2001. Protein refolding for industrial processes. Curr. Opin. Biotechnol. 12: 202-207. https://doi.org/10.1016/S0958-1669(00)00200-7
-
Neely A, Garcia-Olivares J, Voswinkel S, Horstkott H, Hidalgo P. 2004. Folding of active calcium channel
${\beta}1b$ -subunit by size-exclusion chromatography and its role on channel function. J. Biol. Chem. 279: 21689-21694. https://doi.org/10.1074/jbc.M312675200 -
Han Y-G, Liu H-L, Zheng H-J, Li S-G, Bi R-C. 2004. Purification and refolding of human
${\alpha}5$ -subunit (PSMA5) of the 20S proteasome, expressed as inclusion bodies in Escherichia coli. Protein Expr. Purif. 35: 360-365. https://doi.org/10.1016/j.pep.2004.01.013 - Ouellette T, Destrau S, Ouellette T, Zhu J, Roach JM, Coffman JD, et al. 2003. Production and purification of refolded recombinant human IL-7 from inclusion bodies. Protein Expr. Purif. 30: 156-166. https://doi.org/10.1016/S1046-5928(03)00134-7
- Sone Y, Nakamura R, Pan-Hou H, Sato MH, Itoh T, Kiyono M. 2013. Increase methylmercury accumulation in Arabidopsis thaliana expressing bacterial broad-spectrum mercury transporter MerE. AMB Express. 3: 52. https://doi.org/10.1186/2191-0855-3-52
- Park SH, Opella SJ. 2010. Triton X-100 as the "short-chain lipid" improves the magnetic alignment and stability of membrane proteins in phosphatidylcholine bilayers for oriented-sample solid-state NMR spectroscopy. J. Am. Chem. Soc. 132: 12552-12553. https://doi.org/10.1021/ja1055565
- Lu GJ, Son WS, Opella SJ. 2011. A general assignment method for oriented sample (OS) solid-state NMR of proteins based on the correlation of resonances through heteronuclear dipolar couplings in samples aligned parallel and perpendicular to the magnetic field. J. Magn. Reson. 209: 195-206. https://doi.org/10.1016/j.jmr.2011.01.008
- Glendinning K, Macaskie L, Brown N. 2005. Mercury tolerance of thermophilic Bacillus sp. and Ureibacillus sp. Biotechnol. Lett. 27: 1657-1662. https://doi.org/10.1007/s10529-005-2723-8
- Oehmen A, Fradinho J, Serra S, Carvalho G, Capelo J, Velizarov S, et al. 2009. The effect of carbon source on the biological reduction of ionic mercury. J. Hazard. Mater. 165: 1040-1048. https://doi.org/10.1016/j.jhazmat.2008.10.094
- Nakamura K, Hagimine M, Sakai M, Furukawa K. 1999. Removal of mercury from mercury-contaminated sediments using a combined method of chemical leaching and volatilization of mercury by bacteria. Biodegradation 10: 443-447. https://doi.org/10.1023/A:1008329511391
- Sinha A, Pant KK, Khare SK. 2012. Studies on mercury bioremediation by alginate immobilized mercury tolerant Bacillus cereus cells. Int. Biodeterior. Biodegradation 71: 1-8. https://doi.org/10.1016/j.ibiod.2011.12.014
- Tamura K, Nei M, Kumar S. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 101: 11030-11035. https://doi.org/10.1073/pnas.0404206101
Cited by
- Interactions of SARS-CoV-2 envelope protein with amilorides correlate with antiviral activity vol.17, pp.5, 2019, https://doi.org/10.1371/journal.ppat.1009519
- Biodetoxification mercury by using a marine bacterium Marinomonas sp. RS3 and its merA gene expression under mercury stress vol.205, 2019, https://doi.org/10.1016/j.envres.2021.112452