DOI QR코드

DOI QR Code

Altering UDP-Glucose Donor Substrate Specificity of Bacillus licheniformis Glycosyltransferase towards TDP-Glucose

  • Cho, Kye Woon (Department of Life Science and Biochemical Engineering, Sun Moon University) ;
  • Kim, Tae-Su (Department of Life Science and Biochemical Engineering, Sun Moon University) ;
  • Le, Tuoi Thi (Department of Life Science and Biochemical Engineering, Sun Moon University) ;
  • Nguyen, Hue Thi (Department of Life Science and Biochemical Engineering, Sun Moon University) ;
  • Oh, So Yeong (Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University Chungnam) ;
  • Pandey, Ramesh Prasad (Department of Life Science and Biochemical Engineering, Sun Moon University) ;
  • Sohng, Jae Kyung (Department of Life Science and Biochemical Engineering, Sun Moon University)
  • Received : 2018.11.08
  • Accepted : 2018.12.10
  • Published : 2019.02.28

Abstract

The specificity of a Bacillus licheniformis uridine diphosphate (UDP) glycosyltransferase, YjiC, was increased towards thymidine diphosphate (TDP)-sugar by site-directed mutagenesis. The Arg-282 of YjiC was identified and investigated by substituting with Trp. Conversion rate and kinetic parameters were compared between YjiC and its variants with several acceptor substrates such as 7-hydroxyflavone (7-HF), 4',7-dihydroxyisoflavone, 7,8-dihydroxyflavone and curcumin. Molecular docking of TDP-glucose and 7-HF with YjiC model showed pi-alkyl interaction with Arg-282 and His-14, and pi-pi interaction with $His^{14}$ and thymine ring. YjiC (H14A) variant lost its glucosylation activity with TDP-glucose validating significance of His-14 in binding of TDP-sugars.

Keywords

References

  1. Thibodeaux CJ, Melancon CE 3rd, Liu HW. 2008. Natural-product sugar biosynthesis and enzymatic glycodiversification. Angew. Chem. Int. Ed. Engl. 47: 9814-9859. https://doi.org/10.1002/anie.200801204
  2. Salas JA, Mendez C. 2007. Engineering the glycosylation of natural products in actinomycetes. Trends Microbiol. 15: 219-232. https://doi.org/10.1016/j.tim.2007.03.004
  3. Thibodeaux CJ, Melancon CE 3rd, Liu HW. 2008. Natural-product sugar biosynthesis and enzymatic glycodiversification. Angew. Chem. Int. Ed. Engl. 47: 9814-9859. https://doi.org/10.1002/anie.200801204
  4. Pandey RP, Li TF, Kim EH, Yamaguchi T, Park YI, Kim JS, et al. 2013. Enzymatic synthesis of novel phloretin glucosides. Appl. Environ. Microbiol. 79: 3516-3521. https://doi.org/10.1128/AEM.00409-13
  5. Pandey RP, Parajuli P, Koirala N, Park JW, Sohng JK. 2013. Probing 3-hydroxyflavone for in vitro glycorandomization of flavonols by YjiC. Appl. Environ. Microbiol. 79: 6833-6838. https://doi.org/10.1128/AEM.02057-13
  6. Pandey RP, Gurung RB, Parajuli P, Koirala N, Tuoi le T, Sohng JK. 2014. Assessing acceptor substrate promiscuity of YjiC-mediated glycosylation toward flavonoids. Carbohydr. Res. 393: 26-31. https://doi.org/10.1016/j.carres.2014.03.011
  7. Gurung RB, Kim EH, Oh TJ, Sohng JK. 2013. Enzymatic synthesis of apigenin glucosides by glucosyltransferase (YjiC) from Bacillus licheniformis DSM 13. Mol. Cells 36: 355-361. https://doi.org/10.1007/s10059-013-0164-0
  8. Le TT, Pandey RP, Gurung RB, Dhakal D, Sohng JK. 2014. Efficient enzymatic systems for synthesis of novel alpha-mangostin glycosides exhibiting antibacterial activity against Gram-positive bacteria. Appl. Microbiol. Biotechnol. 98: 8527-8538. https://doi.org/10.1007/s00253-014-5947-5
  9. Kim TS, Le TT, Nguyen HT, Cho KW, Sohng JK. 2018. Mutational analyses for product specificity of YjiC towards alpha-mangostin mono-glucoside. Enzyme Microb. Technol. 118: 76-82. https://doi.org/10.1016/j.enzmictec.2018.08.001
  10. Wu CZ, Jang JH, Woo M, Ahn JS, Kim JS, Hong YS. 2012. Enzymatic glycosylation of nonbenzoquinone geldanamycin analogs via Bacillus UDP-glycosyltransferase. Appl. Environ. Microbiol. 78: 7680-7686. https://doi.org/10.1128/AEM.02004-12
  11. Cheng Y, Wei H, Sun R, Tian Z, Zheng X. 2016. Rapid method for protein quantitation by Bradford assay after elimination of the interference of polysorbate 80. Anal. Biochem. 494: 37-39. https://doi.org/10.1016/j.ab.2015.10.013
  12. Kruger NJ. 1994. The Bradford method for protein quantitation. Methods Mol. Biol. 32: 9-15.
  13. Hammond JB, Kruger NJ. 1988. The bradford method for protein quantitation. Methods Mol. Biol. 3: 25-32. https://doi.org/10.1385/0-89603-126-8:25
  14. Kim TS, Pat el SK, Selvaraj C, Jung WS, Pan CH, Kang YC, et al. 2016. A highly efficient sorbitol dehydrogenase from Gluconobacter oxydans G624 and improvement of its stability through immobilization. Sci. Rep. 6: 33438. https://doi.org/10.1038/srep33438
  15. Bolam DN, Roberts S, Proctor MR, Turkenburg JP, Dodson EJ, Martinez-Fleites C, et al. 2007. The cryst al st ruct ure of two macrolide glycosyltransferases provides a blueprint for host cell antibiotic immunity. Proc. Natl. Acad. Sci. USA 104: 5336-5341. https://doi.org/10.1073/pnas.0607897104
  16. Shao H, He X, Achnine L, Blount JW, Dixon RA, Wang X. 2005. Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Plant Cell 17: 3141-3154. https://doi.org/10.1105/tpc.105.035055
  17. Offen W M-FC, Yang M, Kiat-Lim E, Davis BG, Tarling CA, Ford CM, et al. 2006. Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J. 25: 1396-1405. https://doi.org/10.1038/sj.emboj.7600970
  18. He XZ, Wang X, Dixon RA. 2006. Mutational analysis of the Medicago glycosyltransferase UGT71G1 reveals residues that control regioselectivity for (iso)flavonoid glycosylation. J. Biol. Chem. 281: 34441-34447. https://doi.org/10.1074/jbc.M605767200
  19. Osmani SA, Bak S, Moller BL. 2009. Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. Phytochemistry 70: 325-347. https://doi.org/10.1016/j.phytochem.2008.12.009
  20. Kubo A, Arai Y, Nagashima S, Yoshikawa T. 2004. Alteration of sugar donor specificities of plant glycosyltransferases by a single point mutation. Arch. Biochem. Biophys. 429: 198-203. https://doi.org/10.1016/j.abb.2004.06.021
  21. Hoffmeister D, Wilkinson B, Foster G, Sidebottom PJ, Ichinose K, Bechthold A. 2002. Engineered urdamycin glycosyltransferases are broadened and altered in substrate specificity. Chem. Biol. 9: 287-295. https://doi.org/10.1016/S1074-5521(02)00114-X
  22. Gant t RW, Pelt ier-Pain P, Singh S, Zhou M, Thorson JS. 2013. Broadening the scope of glycosyltransferase-catalyzed sugar nucleotide synthesis. Proc. Natl. Acad. Sci. USA 110: 7648-7653. https://doi.org/10.1073/pnas.1220220110
  23. Pandey RP, Parajuli P, Koirala N, Lee JH, Park YI, Sohng JK. 2014. Glucosylation of isoflavonoids in engineered Escherichia coli. Mol. Cells 37: 172-177. https://doi.org/10.14348/molcells.2014.2348
  24. Pandey RP, Parajuli P, Pokhrel AR, Sohng JK. 2018. Biosynthesis of novel 7,8-dihydroxyflavone glycoside derivatives and in silico study of their effects on BACE1 inhibition. Biotechnol. Appl. Biochem. 65: 128-137. https://doi.org/10.1002/bab.1570
  25. Gurung RB, Gong SY, Dhakal D, Le TT, Jung NR, Jung HJ, et al. 2017. Synthesis of curcumin glycosides with enhanced anticancer properties using one-pot multienzyme glycosylation technique. J. Microbiol. Biotechnol. 27: 1639-1648. https://doi.org/10.4014/jmb.1701.01054